

# COPPER BOILERS FOR HYDRONIC HEATING AND HOT WATER SUPPLY

- Limited Warranty
- Installation
- Operation
- Maintenance



WARNING: If the information in this manual is not followed exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

WHAT TO DO IF YOU SMELL GAS:

- Extinguish any open flame.
- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.
- If you cannot reach your gas supplier, call the fire department.
- Installation and service must be performed by a qualified installer, service agency or the gas supplier.



# Instruction Manual GB/GW-200, -300, -400, -500, -650, -750 SERIES 200, 201, 202, 203

TEXT PRINTED OR OUTLINED IN RED CONTAINS

INFORMATION RELATIVE TO YOUR SAFETY. PLEASE READ THOROUGHLY BEFORE INSTALLING AND USING THIS APPLIANCE.



cost efficient, high recovery unit from A. O. Smith Water Products Co.

Please read through this informative manual and pay special attention to the following:

"LIMITED WARRANTY" ON PAGE 2

ROUGH-IN DIMENSIONS/CAPACITIES PAGES 3 - 5

"FOREWORD" ON PAGE 6

"FEATURES" ON PAGES 7 - 8

"VENTING" ON PAGES 9 - 12

"GAS CONNECTIONS" 12 - 14

"INSTALLATION INSTRUCTIONS" ON PAGES 7 - 14

"WIRING DIAGRAM/SCHEMATIC" ON PAGES 15 - 16

"LIGHTING AND OPERATING" ON PAGES 17 - 18

"DIA-SCAN II INSTRUCTIONS" ON PAGES 19 - 22

"SYSTEMS INSTALLATION" ON PAGES 23 - 24

"SYSTEM EQUIPMENT INSTALLATION" PAGES 25 - 28

"TROUBLE SHOOTING" ON PAGES 28 - 29

"GENERAL MAINTENANCE" ON PAGES 29 - 30

"START-UP INSTRUCTIONS" ON PAGES 31 - 32



A DIVISION OF A. O. SMITH CORPORATION EL PASO, TX MC BEE, SC RENTON, WA STRATFORD, ONTARIO VELDHOVEN, THE NETHERLANDS www.hotwater.com

PLACE THESE INSTRUCTIONS ADJACENT TO BOILER AND NOTIFY OWNER TO KEEP FOR FUTURE REFERENCE.

# NEW BOILER LIMITED WARRANTY

A. O. Smith Corporation, the warrantor, extends the following LIMITED WARRANTY to the owner of this hydronic boiler:

- 1. If within TEN years after initial installation of the boiler, the heat exchanger shall prove upon examination by the warrantor to be defective in material or workmanship, the warrantor, at his option, will exchange or repair such part or portion. This term is reduced to FIVE years if this boiler is used for volume hot water supply purposes other than hydronic space heating.
  - a. This warranty is extended to the owner for all other parts or portion during the FIRST year following initial installation of this boiler.

b. The warranty on the repair or replacement of the part or portion will be limited to the unexpired term of the original warranty.

#### 2. CONDITIONS AND EXCEPTIONS

This warranty shall apply only when the boiler is installed in accordance with local plumbing and building codes, ordinances and regulations, the printed instructions provided with it and good industry practices. In addition, an appropriately sized safety relief valve certified to the ASME Boiler and Pressure Vessel Code must have been installed and fresh water used for filling and makeup purposes;

- a. This warranty shall apply only when the boiler is used:
  - (1) at temperatures not exceeding the maximum setting of its operative and/or high limit control;
  - (2) at water pressure not exceeding the working pressure shown on the boiler;
  - (3) when filled with boiler water, free to circulate at all times and with the heat exchanger free of damaging scale deposits;
  - (4) in a noncorrosive and non-contaminated atmosphere;
  - (5) in the United States, its territories or possessions, and Canada;
  - (6) at a water velocity flow rate, not exceeding or below the Boiler's designed flow rates;
- b. Any accident to the boiler, any misuse, abuse (including freezing) or alteration of it, any operation of it in a modified form will void this warranty.

#### 3. SERVICE AND REPAIR EXPENSE

Under this limited warranty the warrantor will provide only a replacement part. The owner is responsible for all other costs. Such costs may include but are not limited to:

- a. Labor charges for service removal, repair or reinstallation of the component part;
- b. Shipping, delivery, handling, and administrative charges for forwarding the replacement part from the nearest distributor and returning the claimed defective part to such distributor.
- c. All cost necessary or incidental for any material and/or permits required for installation of the replacement.

#### 4. LIMITATIONS ON IMPLIED WARRANTIES

Implied warranties, including any warranty of merchantability imposed on the sale of this boiler under state law are limited to one (1) year duration for the boiler or any of its parts. Some states or provinces do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to you.

#### 5. CLAIM PROCEDURE

Any claim under the warranty should be initiated with the dealer who sold the boiler, or with any other dealer handling the warrantor's products. If this is not practical, the owner should contact:

U.S. Customers

Alsip. IL 60803

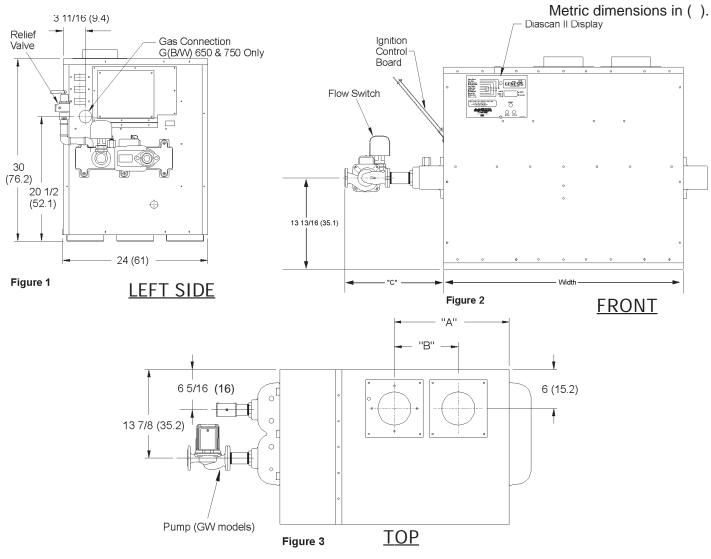
5621 West 115th Street

Telephone: 800 323-2636

- Canadian Customers A. O. Smith Enterprises Ltd. P. O. Box, 310 - 768 Erie Street Stratford, Ontario N5A 6T3 Telephone: (519) 271-5800
- The warrantor will only honor replacement with identical or similar parts thereof which are manufactured or distributed by the warrantor.
- b. Dealer replacements are made subject to in-warranty validation by warrantor.

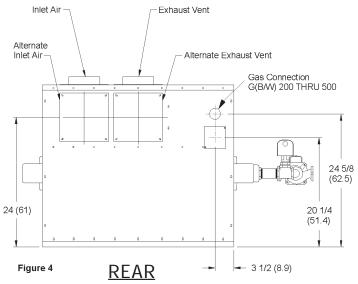
A. O. Smith Water Products Company

#### 6. DISCLAIMERS


NO OTHER EXPRESS WARRANTY HAS BEEN OR WILL BE MADE ON BEHALF OF THE WARRANTOR WITH RESPECT TO THE BOILER OR THE INSTALLATION, OPERATION, REPAIR OR REPLACEMENT OF THE BOILER. THE WARRANTOR SHALL NOT BE RESPONSIBLE FOR WATER DAMAGE, LOSS OF USE OF THE UNIT, INCONVENIENCE, LOSS OR DAMAGE TO PERSONAL PROPERTY OR OTHER CONSEQUENTIAL DAMAGE. THE WARRANTOR SHALL NOT BE LIABLE BY VIRTUE OF THIS WARRANTY OR OTHERWISE FOR DAMAGE TO ANY PERSONS OR PROPERTY, WHETHER DIRECT OR INDIRECT, AND WHETHER ARISING IN CONTRACT OR TORT.

- a. Some states or provinces do not allow the exclusion or limitation of the incidental or consequential damage, so the above limitations or exclusions may not apply to you.
- b. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state or province to province.

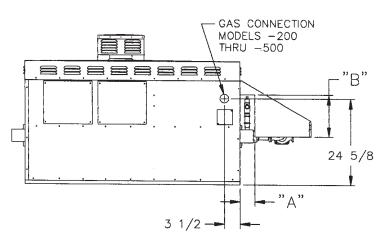
Fill in the following for your own reference. Keep it. Registration is not a condition of warranty. The model and serial number are found on the boiler's rating plate.

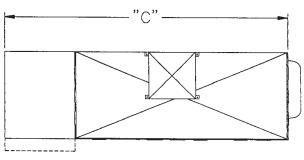

| Owner                      |          |                  |  |  |  |  |  |  |  |
|----------------------------|----------|------------------|--|--|--|--|--|--|--|
| Installation Address       |          |                  |  |  |  |  |  |  |  |
| City and State or Province |          | _Postal/Zip Code |  |  |  |  |  |  |  |
| Date Installed             | Model No | _Serial No       |  |  |  |  |  |  |  |
| Dealer's Name              |          |                  |  |  |  |  |  |  |  |
| Dealer's Address           |          | Phone No         |  |  |  |  |  |  |  |
|                            |          |                  |  |  |  |  |  |  |  |

#### FILL IN WARRANTY AND KEEP FOR FUTURE REFERENCE



| MODEL | TYPE OF |          |      | MANIFOLD<br>PRESS. | MANIFOLD<br>PRESS. |
|-------|---------|----------|------|--------------------|--------------------|
| GB/GW | GAS     | VOLTS/HZ | AMPS | Inches W.C.        | kPa                |
| 200   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 300   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 400   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 500   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 650   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 750   | Natural | 120/60   | 20   | 3.5                | 0.87               |
| 200   | Propane | 120/60   | 20   | 10.0               | 2.49               |
| 300   | Propane | 120/60   | 20   | 10.0               | 2.49               |
| 400   | Propane | 120/60   | 20   | 10.0               | 2.49               |
| 500   | Propane | 120/60   | 20   | 10.0               | 2.49               |
| 650   | Propane | 120/60   | 20   | 10.0               | 2.49               |
| 750   | Propane | 120/60   | 20   | 10.0               | 2.49               |

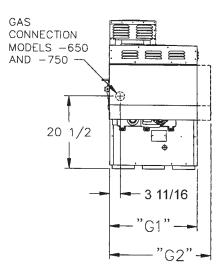

All Models - Maximum Supply Pressure: 14 In. W. C. (03.49 kPa) Minimum Supply Pressure Natural Gas: 4.5 In.W. C. (01.22 kPa) Minimum Supply Pressure Propane (LP) Gas: 11.0 In. W. C. (02.74 kPa)




#### Table 1B: Rough-in Dimensions

|           |               |             | Btu/hr.Input | KW Input     | Exhaust   |           | Water       | Gas    |        |       |          |      |        |      |        |     |
|-----------|---------------|-------------|--------------|--------------|-----------|-----------|-------------|--------|--------|-------|----------|------|--------|------|--------|-----|
|           | Btu/hr. Input | KW Input    | Propane (LP) | Propane (LP) | Vent Size | Inlet Air | Connecions  | Piping | Width  | Width | A        | A    | В      | В    | С      | C   |
| Model     | Natural Gas   | Natural Gas | Gas          | Gas          | (Inch)    | (Inch)    | Size (Inch) | (Inch) | (Inch) | (mm)  | (inch)   | (mm) | (Inch) | (mm) | (Inch) | mm  |
| GB/GW 200 | 199,900       | 59          | 199,900      | 59           | 4         | 4         | 1 1/2       | 3/4    | 23 1/4 | 591   | 11 11/16 | 297  | 7 1/2  | 191  | 12     | 305 |
| GB/GW 300 | 300,000       | 88          | 300,000      | 88           | 5         | 5         | 1 1/2       | 3/4    | 29 1/2 | 749   | 14 13/16 | 376  | 9      | 229  | 12     | 305 |
| GB/GW 400 | 399,900       | 117         | 399,900      | 117          | 6         | 6         | 1 1/2       | 1      | 35 3/4 | 908   | 17 15/16 | 456  | 9      | 229  | 14 3/4 | 375 |
| GB/GW 500 | 500,000       | 147         | 500,000      | 147          | 6         | 6         | 2           | 1      | 42     | 1067  | 21 1/16  | 535  | 9      | 229  | 14 3/4 | 375 |
| GB/GW 650 | 650,000       | 190         | 650,000      | 190          | 8         | 8         | 2           | 1 1/4  | 51 3/8 | 1305  | 25 3/4   | 654  | 9      | 229  | 14 3/4 | 375 |
| GB/GW 750 | 750,000       | 220         | 750,000      | 220          | 8         | 8         | 2           | 1 1/4  | 57 5/8 | 1464  | 28 7/8   | 733  | 9      | 229  | 17 1/4 | 438 |

# REAR






FRONT

TOP

# LEFT SIDE





| Table 1C: | Outdoor | Unit DIm | ensions |
|-----------|---------|----------|---------|
|           |         |          |         |

| MODEL<br>NUMBER | "A" | "B"   | "C"    | "D"    | "E"    | "F"    | "G1"    | "G2"     |
|-----------------|-----|-------|--------|--------|--------|--------|---------|----------|
| GBO/GWO-200     | 3   | 9 3/4 | 42 3/4 | 13 5/8 | 34 5/8 | 41 7/8 | 24 3/16 | —        |
| GBO/GWO-300     | 3   | 9 3/4 | 49     | 13 5/8 | 34 5/8 | 41 7/8 | 24 3/16 | —        |
| GBO/GWO-400     | 3   | 9 3/4 | 55 1/4 | 13 5/8 | 34 5/8 | 41 7/8 | 24 3/16 | —        |
| GBO/GWO-500     | 3   | 9 3/4 | 61 1/2 | 13 5/8 | 34 5/8 | 41 7/8 | 24 3/16 | —        |
| GBO/GWO-650     | 3   | 9 3/4 | 70 7/8 | 13 5/8 | 34 5/8 | 41 7/8 | _       | 27 11/16 |
| GBO/GWO-750     | 3   | 9 3/4 | 77 1/8 | 13 5/8 | 34 5/8 | 41 7/8 | _       | 27 11/16 |

## Table 2: Pump Performance

|        | Water    | Flow |     | Head | Head Loss |    | emp. | Pipe Size | Pump          |  |
|--------|----------|------|-----|------|-----------|----|------|-----------|---------------|--|
| Model  | Category | GPM  | LPM | Feet | Meter     | F  | С    | (inch)    | Taco Models*  |  |
| GW 200 | Normal   | 17   | 64  | 4.4  | 1.3       | 20 | 2.4  | 1 1/2"    | 007           |  |
|        | Hard     | 23   | 87  | 7.7  | 2.3       | 15 | 4.3  | 1 1/2"    | 0012          |  |
| GW 300 | Normal   | 17   | 64  | 4.4  | 1.3       | 30 | 2.4  | 1 1/2"    | 007           |  |
|        | Hard     | 25   | 95  | 9.5  | 2.9       | 20 | 5.3  | 1 1/2"    | 0012          |  |
| GW 400 | Normal   | 23   | 87  | 8.0  | 2.4       | 30 | 4.4  | 1 1/2"    | 0012          |  |
|        | Hard     | 34   | 129 | 6.0  | 1.8       | 20 | 3.3  | 2"        | 0012          |  |
| GW 500 | Normal   | 28   | 106 | 4.6  | 1.4       | 30 | 2.6  | 2"        | 0012          |  |
|        | Hard     | 42   | 159 | 9.1  | 2.8       | 20 | 5.1  | 2"        | 1911 (1/4 HP) |  |
| GW 650 | Normal   | 37   | 140 | 6.2  | 1.9       | 30 | 3.4  | 2"        | 0012          |  |
|        | Hard     | 55   | 208 | 12.2 | 3.7       | 20 | 6.8  | 2"        | 1911 (1/3HP)  |  |
| GW 750 | Normal   | 42   | 159 | 9.7  | 3.0       | 30 | 5.4  | 2"        | 1911 (1/4 HP) |  |
|        | Hard     | 63   | 238 | 18.8 | 5.7       | 20 | 10.4 | 2"        | 1935 (1/3HP)  |  |

PRESSURE DROP INCLUDES THE LOSS THROUGH 50' (15.2M) OF PIPE AND NORMAL FITTINGS, WHEN INSTALLED WITH STORAGE TANK

| WATER CATEGORY | GRAIN HARDNESS PER GAL. |
|----------------|-------------------------|
| NORMAL         | 1 THROUGH 15            |
| HARD           | OVER 15                 |

\*TACO PUMPS SHOWN. EQUIVALENT ARMSTRONG, BELL & GOSSETT OR GRUNDFOS ARE ACCEPTABLE AS LONG AS THE FLOW RATES ARE MAINTAINED. ALWAYS ENSURE ADEQUATE SUPPORT FOR PUMP AND PIPING.

# Table 3: Recovery Capacities

|       | Input Rating | Temp. C | 22   | 28   | 33   | 39   | 44   | 50   | 56   | 61   | 67   | 72   | 78   |
|-------|--------------|---------|------|------|------|------|------|------|------|------|------|------|------|
| Model | Btu/Hr (kW)  | Rise F  | 40   | 50   | 60   | 70   | 80   | 90   | 100  | 110  | 120  | 130  | 140  |
| 200   | (59)         | LPH     | 1919 | 1535 | 1279 | 1097 | 960  | 853  | 768  | 698  | 640  | 590  | 548  |
|       | 199,900      | GPH     | 507  | 406  | 338  | 290  | 254  | 225  | 203  | 184  | 169  | 156  | 145  |
| 300   | (88)         | LPH     | 2880 | 2304 | 1920 | 1646 | 1440 | 1280 | 1152 | 1047 | 960  | 886  | 823  |
|       | 300,000      | GPH     | 761  | 609  | 507  | 435  | 380  | 338  | 304  | 277  | 254  | 234  | 217  |
| 400   | (117)        | LPH     | 3839 | 3071 | 2559 | 2194 | 1920 | 1706 | 1536 | 1396 | 1280 | 1181 | 1097 |
|       | 399,900      | GPH     | 1014 | 811  | 676  | 580  | 507  | 451  | 406  | 369  | 338  | 312  | 290  |
| 500   | (147)        | LPH     | 4800 | 3840 | 3200 | 2743 | 2400 | 2133 | 1920 | 1745 | 1600 | 1477 | 1371 |
|       | 500,000      | GPH     | 1268 | 1015 | 845  | 725  | 634  | 564  | 507  | 461  | 423  | 390  | 362  |
| 650   | (190)        | LPH     | 6240 | 4992 | 4160 | 3566 | 3120 | 2773 | 2496 | 2269 | 2080 | 1920 | 1783 |
|       | 650,000      | GPH     | 1649 | 1319 | 1099 | 942  | 824  | 733  | 659  | 600  | 550  | 507  | 471  |
| 750   | (220)        | LPH     | 7200 | 5760 | 4800 | 4114 | 3600 | 3200 | 2880 | 2618 | 2400 | 2215 | 2057 |
|       | 750,000      | GPH     | 1902 | 1522 | 1268 | 1087 | 951  | 845  | 761  | 692  | 634  | 585  | 544  |

## Table 4: Heat Exchanger Pressure Drop

|             | TEMPERATURE RISE AND PRESSURE DROP |                |          |                |          |                |              |                   |              |                   |              |                   |
|-------------|------------------------------------|----------------|----------|----------------|----------|----------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|
|             | 20 (°F                             | ) Rise         | 30 (°F   | ) Rise         | 40 (°F   | ) Rise         | 10 (°C) Rise |                   | 15 (°C) Rise |                   | 20 (°C) Rise |                   |
| Model<br>GB | Flow GPM                           | PD-Ft.<br>Head | Flow GPM | PD-Ft.<br>Head | Flow GPM | PD-Ft.<br>Head | Flow LPM     | PD-Meters<br>Head | Flow LPM     | PD-Meters<br>Head | Flow LPM     | PD-Meters<br>Head |
| 200         | 17                                 | 0.6            | 11       | 0.4            | 8        | 0.1            | 64           | 0.19              | 42           | 0.12              | 30           | 0.02              |
| 300         | 25                                 | 1.3            | 17       | 0.6            | 13       | 0.4            | 95           | 0.38              | 64           | 0.19              | 49           | 0.12              |
| 400         | 34                                 | 2.2            | 23       | 0.9            | 17       | 0.6            | 129          | 0.67              | 87           | 0.28              | 64           | 0.20              |
| 500         | 42                                 | 3.4            | 28       | 1.8            | 21       | 0.9            | 159          | 1.03              | 106          | 0.54              | 79           | 0.29              |
| 650         | 55                                 | 3.5            | 37       | 2.0            | 27       | 1.8            | 208          | 1.07              | 140          | 0.61              | 102          | 0.56              |
| 750         | 63                                 | 8.3            | 42       | 4.3            | 32       | 2.1            | 238          | 2.53              | 159          | 1.31              | 121          | 0.64              |

# FOREWORD

## 

TEXT PRINTED OR OUTLINED IN RED CONTAINS INFOR-MATION RELATIVE TO YOUR SAFETY. PLEASE READ COMPLETELY BEFORE USING APPLIANCE.

Detailed installation diagrams are in this manual. These diagrams will provide the installer with a reference of materials needed and a suggested method of piping. IT IS NECESSARY THAT ALL WATER AND GAS PIPING, AND THE ELECTRICAL WIRING BE INSTALLED AND CONNECTED AS SHOWN IN THE DIAGRAMS.

CHECK THE DIAGRAMS THOROUGHLY BEFORE STARTING INSTALLATION TO AVOID POSSIBLE ERRORS AND TO MINIMIZE TIME AND MATERIALS COST. SEE FIGURES 1 THROUGH 4 AND TABLES 1A, 1B AND 1C.

This design complies with the latest edition of the <u>ANSI Standard</u> <u>Z21.13</u>, for Gas-Fired Low-Pressure Steam and Hot Water Boilers, or <u>CGA 4.9/CGA 3.3</u> latest edition as a low-pressure boiler.

#### MAKE SURE THE GAS ON WHICH THE BOILER WILL OPERATE IS THE SAME AS THAT SPECIFIED ON THE BOILER RATING PLATE.

The boiler installation must conform to these instructions and the requirements of the local authority having jurisdiction.

In the absence of local code requirements, the installation must conform to the <u>National Fuel Gas Code</u>, ANSI Z223.1 or CAN/ CGA-B149.1 or B149.2 (most recent edition).

These manuals can be purchased from the American Gas Association Laboratories, 8501 East Pleasant Valley Road, Cleveland, OH 44131 or Canadian Gas Association Laboratories, 55 Scarsdale Road, Don Mills, Ontario Canada M3B 2R3.

#### **REPLACEMENT PARTS**

Replacement parts may be ordered through A. O. Smith dealers, authorized servicers or distributors. Refer to the Yellow Pages for where to call or contact (in United States) the A. O. Smith Water Products Company, 5621 West 115th Street, Alsip, IL 60803, 1-800-433-2545 or (in Canada) A. O. Smith Enterprises Ltd., 768 Erie Street, Stratford, Ontario, Canada N5A 6T3, 519-271-5800. When ordering parts be sure to state the quantity, part number and description of the item including the complete model and serial number as it appears on the product. Refer to the parts lists for more information.

For Technical Assistance call A. O. Smith Technical Information Center at 1-800-527-1953.

#### 

THE WATER MANIFOLD IS NOT DESIGNED TO SUPPORT THE WEIGHT OF THE WATER PIPING SYSTEM. AS ON ALL BOILER INSTALLATIONS, SPECIAL CARE MUST BE TAKEN TO ENSURE PROPER SUPPORT.

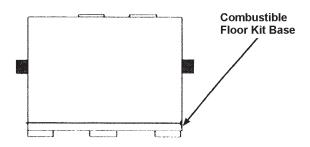
#### 

UNDER NO CIRCUMSTANCES SHOULD THE EQUIPMENT ROOM WHERE THE BOILER IS INSTALLED EVER BE UNDER NEGATIVE PRESSURE. PARTICULAR CARE MUST BE TAKEN WHEN EXHAUST FANS, COMPRESSORS, AIR HANDLING EQUIPMENT, ETC., MAY INTERFERE WITH THE COMBUS-TION AND VENTILATION AIR SUPPLIES OF THIS BOILER.

# 

Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation of the boiler.

#### "Verify proper operation after servicing."


#### **INSTALLATION CLEARANCES**

Sufficient area should be provided at the front (2 feet minimum) and at the water connection side (1 foot minimum) of the unit for proper servicing. Sufficient clearance should be provided at the return header side of the boiler to permit access to heat exchanger tubes for cleaning. In a utility room installation, the door shall be wide enough to allow the boiler to enter or to permit the replacement of another appliance.

These boilers are approved for installation on noncombustible flooring in an alcove with minimum clearance to combustibles of:

3 inches Sides, and Back; 3 inches top, Front Alcove, 6 inches Vent.

For installation on combustible flooring use the Combustible Floor Kit. The combustible floor kit base adds 4" to the overall height of the boiler. See figure 5.



#### Figure 5: Boiler on Combustible Floor Base

| Model       | Combustible Floor Kit |
|-------------|-----------------------|
| (GB/GW)-200 | 210202-000            |
| (GB/GW)-300 | 210202-001            |
| (GB/GW)-400 | 210202-002            |
| (GB/GW)-500 | 210202-003            |
| (GB/GW)-650 | 210202-004            |
| (GB/GW)-750 | 210202-005            |

Two inch clearance is allowable from combustible construction to hot water pipes.

#### LEVELLING

Each unit must be checked after installation to be certain that it is level.

#### **CONDENSATION WARNING**

Your boiler is not designed to operate with a boiler inlet water temperature of less than 120°F (38°C). Colder inlet water temperatures will result in significant condensation developing on the heat exchanger. This situation can cause a corrosive environment for the heat exchanger, burners and venting resulting in premature damage, which could result in serious personal injury or death. Damage caused by excessive condensation will not be covered under the limited warranty.

For systems that use large volumes of cold water or systems utilizing heavy water draws, condensation can be prevented by using a bypass loop. See page 27.

# **FEATURES**

#### IMPORTANT

Only qualified personnel shall perform the initial firing of the heater. At this time the user should not hesitate to ask the start-up technician any questions regarding the operation and maintenance of the unit.

Lighting and Operating instructions are included with this manual. By using these instructions, the user may be able to make minor operational adjustments and save unnecessary service calls. However, the user should not attempt repairs, but should contact a service technician or gas supplier.

#### SAFETY RELIEF VALVES

Your local code authority may have other specific relief valve requirements not covered below.

# 

THE PURPOSE OF A SAFETY RELIEF VALVE IS TO AVOID EXCESSIVE PRESSURE WHICH MAY CAUSE TANK EXPLOSION, SYSTEM OR BOILER DAMAGE.

TO AVOID WATER DAMAGE A DRAIN LINE MUST BE CONNECTED TO A SAFETY RELIEF VALVE TO DIRECT DISCHARGE TO A SAFE LOCATION. A DRAIN LINE MUST NOT BE REDUCED FROM THE SIZE OF THE VALVE OUTLET AND IT MUST NOT CONTAIN ANY VALVES BETWEEN THE BOILER AND THE RELIEF VALVE OR THE RELIEF VALVE AND THE DRAIN EXIT. IN ADDITION, THERE SHOULD NOT BE ANY RESTRICTIONS IN A DRAIN LINE NOR SHOULD IT BE ROUTED THROUGH AREAS WHERE FREEZING CONDITIONS MIGHT OCCUR. DO NOT THREAD OR CAP THE DRAIN LINE EXIT. RESTRICTING OR BLOCKING A DRAIN LINE WILL DEFEAT THE PURPOSE OF THE RELIEF VALVE AND MAY CREATE AN UNSAFE CONDITION. INSTALL A DRAIN LINE WITH A DOWNWARD SLOPE SUCH THAT IT NATURALLY DRAINS ITSELF.

If any safety relief valve is replaced, the replacement valve must comply with the latest version of the ASME Boiler and Pressure Vessel Code, Section IV (HEATING BOILERS). Select a relief valve with a discharge rating NOT less than the boiler input, and a set pressure NOT exceeding the working pressure of any component in the system.

The storage tank temperature and pressure relief valve must comply with the applicable construction provisions of the Standard for Relief Valves and Automatic Gas Shut-off Devices for Hot Water Supply Systems, ANSI Z21 or CAN/CGA-B149.1 or B149.2 (latest edition). The valve must be of the automatic reset type and not embody a single-use type fusible plug, cartridge or linkage.

FOR HOT WATER HEATING SYSTEMS, the boilers are shipped with a 50 psi pressure relief valve. This relief valve is factory installed in the water outlet header of the boiler, see figure 1.

FOR HOT WATER SUPPLY SYSTEMS, the boilers are shipped with a 125 psi pressure relief valve. This relief valve is factory installed in the water outlet header of the boiler, see figure 1.

This ASME-rated valve has a discharge capacity that exceeds the maximum boiler input rating and a pressure rating that does not exceed the maximum working pressure shown on the boiler rating plate.

In addition, an A.G.A. design-certified and ASME-rated temperature and pressure (T & P) relief valve must be installed on each and every water storage tank in the hot water supply system. The T & P relief valve should have a temperature rating of 210°F, a pressure rating NOT exceeding the lowest rated working pressure of any system component, and a discharge capacity exceeding the total input of the water boilers supplying water to the storage tank.

Locate the T & P relief valve (a) in the top of the tank, or (b) in the side of the tank on a center line within the upper six (6) inches of the top of the tank. See figs. 20 and 22. The tapping shall be threaded in accordance with the latest edition of the Standard for Pipe Threads, General Purpose (inch), ANSI/ASME B1.20.1. The location of, or intended location for, the T & P relief valve shall be readily accessible for servicing or replacement.

# INSTALLATION INSTRUCTIONS

## REQUIRED ABILITY

INSTALLATION OR SERVICE OF THIS BOILER REQUIRES ABILITY EQUIVALENT TO THAT OF A LICENSED TRADESMAN IN THE FIELD INVOLVED. PLUMBING, AIR SUPPLY, VENTING, GAS SUPPLY AND ELECTRICAL WORK ARE REQUIRED.

#### LOCATION

When installing the boiler, consideration must be given to proper location. Location selected should be as close to the stack or chimney as practical with adequate air supply and as centralized with the piping system as possible. This location should also be such that the gas ignition system components are protected from water (dripping, spraying, etc.) during appliance operation and service [circulator replacement, control replacement, etc.].

- THE BOILER MUST NOT BE INSTALLED ON CARPETING.
- THE BOILER SHOULD NOT BE LOCATED IN AN AREA WHERE IT WILL BE SUBJECT TO FREEZING.
- THE BOILER SHOULD BE LOCATED NEAR A FLOOR DRAIN.
- THE BOILER SHOULD BE LOCATED IN AN AREA WHERE LEAKAGE FROM THE BOILER OR CONNECTIONS WILL NOT RESULT IN DAMAGE TO THE ADJACENT AREA OR TO LOWER FLOORS OF THE STRUCTURE.

WHEN SUCH LOCATIONS CANNOT BE AVOIDED, A SUITABLE DRAIN PAN SHOULD BE INSTALLED UNDER THE BOILER. Such pans should be fabricated with sides at least 2-1/2" deep, with length and width at least 2" greater than the dimensions of the boiler plus piping connections and must be piped to an adequate drain. The pan must not restrict combustion air flow.

## 

THERE IS A RISK IN USING FUEL BURNING APPLIANCES IN ROOMS OR AREAS WHERE GASOLINE, OTHER FLAMMABLE LIQUIDS OR ENGINE DRIVEN EQUIPMENT OR VEHICLES ARE STORED, OPERATED OR REPAIRED. FLAMMABLE VAPORS ARE HEAVY AND TRAVEL ALONG THE FLOOR AND MAY BE IGNITED BY THE IGNITER OR MAIN BURNER FLAMES CAUSING FIRE OR EXPLOSION. SOME LOCAL CODES PERMIT OPERATION OF GAS APPLIANCES IF INSTALLED 18 INCHES OR MORE ABOVE THE FLOOR. THIS MAY REDUCE THE RISK IF LOCATION IN SUCH AN AREA CANNOT BE AVOIDED.

FLAMMABLE ITEMS, PRESSURIZED CONTAINERS OR ANY OTHER POTENTIAL FIRE HAZARDOUS ARTICLES MUST NEVER BE PLACED ON OR ADJACENT TO THE BOILER.

OPEN CONTAINERS OF FLAMMABLE MATERIAL SHOULD NOT BE STORED OR USED IN THE SAME ROOM WITH THE BOILER. If the boiler is installed above the level of heating system terminal units, a low water cutoff device must be installed in the boiler outlet at the time of installation.

#### CHEMICAL VAPOR CORROSION

Heat exchanger corrosion and component failure can be caused by the heating and breakdown of airborne chemical vapors. Spray can propellants, cleaning solvents, refrigerator and air conditioning refrigerants, swimming pool chemicals, calcium and sodium chloride, waxes, and process chemicals are typical compounds which are corrosive. These materials are corrosive at very low concentration levels with little or no odor to reveal their presence.

Products of this sort should not be stored near the boiler. Also, air which is brought in contact with the water boiler should not contain any of these chemicals. If necessary, uncontaminated air should be obtained from remote or outside sources.

#### MANUAL RESET HIGH TEMPERATURE SAFETY OPERATING CONTROL LIMIT

This device prevents the water temperature from reaching 250°F. This device is located in the outlet water portion of the header casting.

#### AUTOMATIC RESET HIGH TEMPERATURE LIMIT CONTROL

#### 

#### LIMIT CONTROLS ARE <u>NOT</u> TO BE USED AS A THERMOSTAT.

<u>ALL MODELS</u> - This limit is a safety device in series with the ignition system. Set the limit control to a minimum of 40°F above the maximum designed system temperature. If the boiler outlet water temperature should exceed the high limit setting, the main gas valves will close. The limit control is factory set at 180°F and has an adjustable range from 110 to 240°F. The operating differential is also adjustable from 5 to 50°F.

#### TANK PROBE

FOR HOT WATER SUPPLY SYSTEMS (GW models), A tank probe is supplied with each hot water supply boiler. The inlet water temperature will default to the tank temperature on the Dia-Scan II display when the tank probe is installed.

"Pigtails" of field-supplied wires should be spliced to "pigtails" of tank probe and to "pigtails" at the junction box. See figure 21 for the tank probe installation. Follow the instructions on page 22 for the operation and temperature setting procedures for the temperature sensor.

FOR HOT WATER HEATING SYSTEMS (GB models) Due to the many various types of systems and operating conditions, no factory operating control is supplied with the GB models. GB models require a field supplied operating control be installed in the system. Such as: loop stat, indoor/outdoor reset control, sequencing panel, or energy management system. These types of controls connect to the brown thermostat wires in the junction box on the boiler. Do not operate this boiler using the internal high limits only, you must use an operating stat as mentioned above.

#### CIRCULATING PUMP

The pump flow rate should not exceed the maximum recommended flow rate, see table 2.

**FOR HOT WATER SUPPLY SYSTEMS (GW models)**, the circulating pump is an integral part of the Boiler, see figure 3. This pump has been lubricated at the factory, and future lubrication should be in accordance with the motor manufacturer's instructions provided as supplement to this manual.

FOR HOT WATER HEATING SYSTEMS (GB models), the circulating pump is NOT provided and must be field-installed.

#### SAFETY FLOW SWITCH (Supplied)

The safety flow switch is a safety device which is installed at the water outlet of the unit to prevent main burner operation in the event of inadequate water flow through the boiler.

This switch is wired into the Ignition Control, and its function is displayed on the Ignition Control Display. Green light on - switch is closed, and red light on - inadequate water flow or flow switch failure.

#### LOW WATER CUTOFF (Not Supplied)

If low water protection is required by the authorities having jurisdiction, a low water cutoff switch should be installed next to the boiler in the outlet water line as shown in figure 23. The switch should receive periodic (every six months) inspection to assure proper operation. A low water cutoff device of the float type should be flushed every six months.

#### DRAIN VALVE (Not Supplied)

Drain valves must be obtained and installed on each boiler and tank for draining purposes.

#### AIR REQUIREMENTS

#### 

FOR SAFE OPERATION, AN AMPLE SUPPLY OF AIR MUST BE PROVIDED FOR PROPER COMBUSTION AND VENTILATION IN ACCORDANCE WITH THE NATIONAL FUEL GAS CODE, ANSI Z223.1 OR CAN/CGA-B149.1 OR B149.2 (LATEST EDITIONS) OR APPLICABLE PROVISIONS OF THE LOCAL BUILDING CODES. AN INSUFFICIENT SUPPLY OF AIR MAY RESULT IN A YELLOW, LUMINOUS BURNER FLAME, CARBONING OR SOOTING OF THE FINNED HEAT EXCHANGER, OR CREATE A RISK OF ASPHYXIATION. DO NOT OBSTRUCT THE FLOW OF COMBUSTION AND VENTILATION AIR.

#### UNCONFINED SPACE

In buildings of conventional frame, brick or stone construction, unconfined spaces may provide adequate air for combustion.

If the unconfined space is within a building of tight construction (buildings using the following construction: weather stripping, heavy insulation, caulking, vapor barrier, etc.), air for combustion, ventilation, must be obtained from outdoors or spaces freely communicating with the outdoors. The installation instructions for confined spaces in tightly constructed buildings must be followed to ensure adequate air supply.

#### **CONFINED SPACE**

#### (a) U. S. INSTALLATIONS

When drawing combustion and dilution air from inside a conventionally constructed building to a confined space, such a space shall be provided with two permanent openings, ONE WITHIN 12 INCHES OF THE ENCLOSURE TOP AND ONE WITHIN 12 INCHES OF THE ENCLOSURE BOTTOM. Each opening shall have a free area of at least one square inch per 1000 Btuh of the total input of all appliances in the enclosure, but not less than 100 square inches.

If the confined space is within a building of tight construction, air for combustion, ventilation, and draft hood dilution must be obtained from outdoors. When directly communicating with the outdoors or communicating with the outdoors through vertical ducts, two permanent openings, located in the above manner, shall be provided. Each opening shall have a free area of not less than one square inch per 4000 Btuh of the total input of all appliances in the enclosure. If horizontal ducts are used, each opening shall have a free area of not less than one square inch per 2000 Btuh of the total input of all appliances in the enclosure.

#### (b) CANADIAN INSTALLATIONS

Ventilation of the space occupied by the boiler(s) shall be provided by an opening for ventilation air at the highest practical point communicating with outdoors. The total cross-sectional area shall be at least 10% of the area of the combustion air opening but in no case shall the cross-sectional area be less than 10 square inches (6500 mm<sup>2</sup>).

In addition to the above, there shall be permanent air supply opening(s) having a cross-sectional area of not less than 1 square inch per 7,000 BTUH (310 mm<sup>2</sup>/KW) up to and including 1,000,000 BTUH <u>plus</u> 1 square inch per 14,000 BTU in excess of 1,000,000 BTUH. This opening(s) shall be located at, or ducted to, a point neither more than 18" (450 mm) nor less than 6 inches (150 mm) above the floor level.

Where power vented equipment is used in the same room as the boiler, sufficient air openings must be supplied.

UNDERSIZED OPENINGS MAY RESULT IN INSUFFICIENT AIR FOR COMBUSTION.

Where an exhaust fan is installed in the same room with a boiler, sufficient openings for air must be provided in the walls. UNDERSIZED OPENINGS WILL CAUSE AIR TO BE DRAWN INTO THE ROOM THROUGH THE CHIMNEY, CAUSING POOR COMBUSTION. SOOTING MAY RESULT WITH AN INCREASED RISK OF ASPHYXIATION.

#### VENTING THE BOILER

This boiler is approved to be vented as a Category I, Category III (horizontal venting), or a Direct Vent appliance. The Horizontal and Direct Venting options require a special vent kit.

| Horizontal or Horizontal Direct Vent                                                                                      |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Special Vent Kit                                                                                                          | Model Number                                                                                     |
| 210320-000                                                                                                                | G(W,B) 200                                                                                       |
| 210320-001                                                                                                                | G(W,B) 300                                                                                       |
| 210320-002                                                                                                                | G(W,B) 400                                                                                       |
| 210320-002                                                                                                                | G(W,B) 500                                                                                       |
| 210320-003                                                                                                                | G(W,B) 650                                                                                       |
| 210320-003                                                                                                                | G(W,B) 750                                                                                       |
| Vertical Direct Vent Special Vent Kit<br>210317-000<br>210317-001<br>210317-002<br>210317-002<br>210317-003<br>210317-003 | Model Number<br>G(W,B) 200<br>G(W,B) 300<br>G(W,B) 400<br>G(W,B) 500<br>G(W,B) 650<br>G(W,B) 750 |

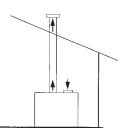
#### 

When venting the Genesis Boiler through oversize chimney (including masonry chimneys), additional care must be exercised to assure proper draft. For proper operation, a minimum draft of -0.02" w.c. and a maximum draft of -0.04" w.c. must be maintained. In instances of excessive draft, a barometric damper may be required to assist in maintaining the proper draft. Draft should be measured 2 feet above the boiler vent collar.

## 

THE INSTRUCTIONS IN THIS SECTION ON VENTING THE BOILER MUST BE FOLLOWED TO AVOID CHOKED COMBUSTION OR RECIRCULATION OF FLUE GASES. SUCH CONDITIONS CAUSE SOOTING OR RISKS OF FIRE AND ASPHYXIATION.

#### STANDARD (VERTICAL) VENTING, CATEGORY I


THIS BOILER MAY BE VENTED ACCORDING TO TABLE 5A AND 5C (ALSO SEE FIGURE 6). AT LEAST TYPE B VENTING MUST BE USED WITH THE STANDARD VENTING OPTION (thru-the-roof) USING THE NATIONAL FUEL GAS CODE VENT TABLES.\* TYPE B VENT PIPE <u>CANNOT</u> BE USED IF THE BOILER IS VENTED HORIZONTALLY OR AS A DIRECT VENT (SEE PAGES 10 AND 11). ALL LOCAL UTILITY, STATE/ PROVINCIAL, REGULATIONS ON VENTING MUST BE FOLLOWED.

VENT SIZING, INSTALLATION AND TERMINATION SHALL BE IN ACCORDANCE WITH THE <u>NATIONAL FUEL GAS CODE</u>, ANSI Z223.1 OR CAN/CGA-B149.1 OR B149.2 (LATEST EDITIONS).

#### VENT CONNECTION

| Model Number | Vent Connector |
|--------------|----------------|
| G(W,B) 200   | 4"             |
| G(W,B) 300   | 5"             |
| G(W,B) 400   | 6"             |
| G(W,B) 500   | 6"             |
| G(W,B) 650   | 8"             |
| G(W,B) 750   | 8"             |

\* For vent arrangements other than Table 5A and for proper boiler operation, a barometric damper is required to maintain draft between -0.02" w.c. and -0.04" w.c at 2 feet above the boiler vent collar.



#### Figure 6. Single Pipe Vertical Termination

Vent connections must be made to an adequate stack or chimney and shall be in accordance with the <u>National Fuel Gas Code</u>, ANSI Z223.1 or CAN/CGA-B149.1 or B149.2 or applicable provisions of the local building codes. Size and install proper size vent pipe.

Horizontal runs of vent pipe shall be securely supported by adequately placed (approximately every 4 feet), noncombustible hangers suitable for the weight and design of the materials employed to prevent sagging and to maintain a minimum upward slope of 1/4" per foot from the boiler to the vent terminals. Dampers or other obstructions must not be installed in the vent. Be sure that the vent connector does not extend beyond the inside wall of the chimney.

#### CONNECTING BOILER TO A COMMON VENT

#### 

When the GENESIS boilers are commonly vented, additional care must be exercised to assure proper draft. For proper operation, a minimum draft of -0.02" w.c. and a maximum draft of -0.04" w.c. must be maintained AT EACH INDIVIDUAL BOILER. In

instances of excessive draft, a barometric damper may be required to assist in maintaining the proper draft. Draft should be measured 2 feet above EACH boiler vent collar.

Do not connect the boiler to a common vent or chimney with solid fuel burning equipment. This practice is prohibited by most local building codes as is the practice of venting gas fired equipment to the duct work of ventilation systems.

Where a separate vent connection is not available and the vent pipe from the boiler must be connected to a common vent with an oil burning furnace, the vent pipe should enter the common vent or chimney at a point ABOVE the flue pipe from the oil furnace.

UL/ULC listed double wall type B-1 gas vents, through 8" diameter, can be installed in heated and unheated areas and can pass through floors, ceilings, partitions, walls and roofs, provided the required clearance is observed.

At the time of removal of an existing boiler, the following steps shall be followed with each appliance remaining connected to the common venting system. Perform these steps while the other appliances remaining connected to the common venting system are not in operation.

Seal any unused openings in the common venting system.

Visually inspect the venting system for proper size and horizontal pitch and determine there is not blockage or restriction, leakage, corrosion and other deficiencies which could cause an unsafe condition.

All boiler venting systems shall be installed in accordance with the <u>National Fuel Gas Code</u>, ANSI Z223.1 or CAN/CGA-B149.1 or B149.2 (latest version), or applicable provisions of the local building codes.

#### SINGLE PIPE HORIZONTAL VENTING

Vent sizing, installation and termination shall be in accordance with the <u>NATIONAL FUEL GAS CODE</u>, ANSI Z223.1 OR CAN/ CGA-B149.1 OR B149.2 (LATEST EDITIONS). If applicable, all local, utility, state/provincial regulations on venting must be followed. This boiler may be vented according to table 5A and 5C (also, see figure 7). The exhaust vent pipe must be "Saf-T-Vent" manufactured by Heat-Fab Inc. The exhaust vent material type is AL 29-4C. This vent system must be 100% sealed with a condensate trap located as close to the boiler as possible.

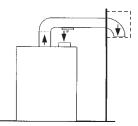



Figure 7. Single Pipe Horizontal Termination TABLE 5A-SINGLE PIPE HORIZONTAL AND VERTICAL VENTING

| MODEL     | EXHAUST VENT* |
|-----------|---------------|
| GB/GW-200 | 110'          |
| GB/GW-300 | 110'          |
| GB/GW-400 | 50'           |
| GB/GW-500 | 50'           |
| GB/GW-650 | 50'           |
| GB/GW-750 | 50'           |

\* When sizing exhaust piping and intake air piping, 90-degree elbows are equivalent to 10 feet of straight pipe and 45-degree elbows are equal to 5 feet of straight pipe.

# Intake/Exhaust Installation Requirements (See figures 6, 7 and 14):

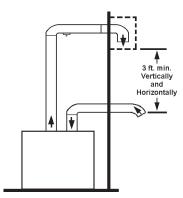
- 1. The termination must be a minimum of 12 inches above anticipated snow or grade level whichever is higher.
- 2. Due to normal formation of water vapor in the combustion process, horizontal terminations must not be located over areas of pedestrian or vehicular traffic, (e.g., public walkways or over areas where condensate could create a nuisance or hazard. This is especially true in colder climates where ice buildup is likely to occur. A.O. Smith Corporation will not be held liable for any personal injury or property damage due to any dislodging of ice.
- The minimum distance from the exhaust terminal to any window, gravity air inlet to a building, or from gas or electric meter(s) is 6 feet horizontally, 4 feet below and 2 feet above.
- 4. The minimum distance from the exhaust terminal to an inside corner formed by two exterior walls is 6 feet but 10 feet is recommended where possible.
- 5. Maintain a minimum distance of 4 feet from any soffit or eave vent to the exhaust terminal.
- Maintain a minimum distance of 10 feet from any forced air inlet to a building. Any fresh air or make up air inlet such as a dryer or furnace area is considered to be a forced air inlet.
- 7. Avoid areas where condensate drainage may cause problems such as above planters, patios, or adjacent to windows where the steam from the flue gases may cause fogging.
- 8. Select the point of wall penetration where the minimum 1/4" per foot of slope up can be maintained.
- 9. The through the wall termination kit is suitable for zero clearance to combustible materials.
- 10. The mid point of the exhaust and intake air termination elbows must be a minimum of 12 inches from the exterior wall.

#### **DIRECT VENT HORIZONTAL AND VERTICAL VENTING** Vent sizing, installation and termination shall be in accordance with the <u>NATIONAL FUEL GAS CODE</u>, ANSI Z223.1 OR CAN/ CGA-B149.1 OR B149.2 (LATEST EDITIONS). If applicable, all local, utility, state/provincial regulations on venting must be followed. This boiler may be vented according to table 5B and 5C (also, see figures 8, 9, 10 and 11). The exhaust vent pipe must be "Saf-T-Vent" manufactured by Heat-Fab Inc. The exhaust vent material type is AL 29-4C. This vent system must be 100% sealed with a condensate trap located as close to the boiler as possible.

The intake air piping can be PVC, CPVC, ABS or any suitable intake air piping that can be sealed.

| MODEL     | INTAKE* | EXHAUST* |
|-----------|---------|----------|
| GB/GW-200 | 60'     | 60'      |
| GB/GW-300 | 60'     | 60'      |
| GB/GW-400 | 35'     | 35'      |
| GB/GW-500 | 35'     | 35'      |
| GB/GW-650 | 35'     | 35'      |
| GB/GW-750 | 35'     | 35'      |

TABLE 5B -DIRECT VENT HORIZONTAL AND VERTICAL VENTING


\* When sizing exhaust piping and intake air piping, 90-degree elbows are equivalent to 10 feet of straight pipe and 45-degree elbows are equal to 5 feet of straight pipe.

# Intake/Exhaust Installation Requirements (See Figures 8, 9, 10, 11 & 14):

- 1. The exhaust and intake air termination must be a minimum of 12 inches above anticipated snow or grade level which ever is higher, see figure 14.
- 2. Due to normal formation of water vapor in the combustion process, horizontal terminations must not be located over areas of pedestrian or vehicular traffic, (e.g. public walkways

or over areas where condensate could create a nuisance or hazard). This is especially true in colder climates where ice buildup is likely to occur. A.O. Smith Corporation will not be held liable for any personal injury or property damage due to any dislodging of ice.

- The minimum distance from the exhaust terminal to any window, gravity air inlet to a building, or from gas or electric meter(s) is 6 feet horizontally, 4 feet below and 2 feet above.
- 4. The minimum distance from the exhaust terminal to an inside corner formed by two exterior walls is 6 feet but 10 feet is recommended where possible.
- 5. Maintain a minimum distance of 4 feet from any soffit or eave vent to the exhaust terminal.
- Maintain a minimum distance of 10 feet from any forced air inlet to a building. Any fresh air or make up air inlet such as a dryer or furnace area is considered to be a forced air inlet.
- 7. Avoid areas where condensate drainage may cause problems such as above planters, patios, or adjacent to windows where the steam from the flue gases may cause fogging.
- Select the point of wall penetration where the minimum 1/4" per foot of slope up can be maintained.
- 9. The through the wall termination kit is suitable for zero clearance to combustible materials.
- 10. The mid point of the exhaust and intake air termination elbows must be a minimum of 12 inches from the exterior wall.



#### 

Direct venting into dead air spaces such as alleys, atriums and inside corners can cause recirculation of flue gases. Recirculation of flue gases will cause sooting, premature failure of the heat exchanger and icing of the combustion air intake during severe cold weather. To prevent the recirculation of flue gases, maintain as much distance as possible between the combustion air intake and the exhaust vent terminal.

Figure 8. Direct Vent Horizontal Termination and Minimum Clearances

Table 5C - Intake/Venting Configurations, Categories and Materials

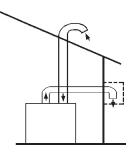



Figure 9. Direct Vent Horizontal/Vertical Termination

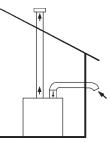



Figure 10. Direct Vent Vertical/Horizontal Termination

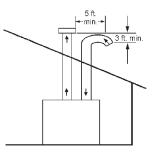



Figure 11. Direct Vent Vertical Termination and minimum clearances

#### FLIP VENT INSTALLATION

This boiler can be vented and/or bring in fresh air through the rear of the cabinet with the use of the FLIP VENT and vent adaptor. Any of the previous venting configurations can be installed with rear connections.

| Source for Combustion<br>Air Supply                              | Exhaust Venting<br>Configuration | Venting Category | Approved Venting<br>Material Required                                                                               | Combustion Air<br>Intake Material |
|------------------------------------------------------------------|----------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Boiler Room Air (Using combustion air from within the building.) | Vertical Natural Draft           | Category I       | Type B Vent Pipe*<br>(Requires a single-acting,<br>listed barometric damper<br>if vent length<br>exceeds Table 5A.) | None<br>Required                  |
|                                                                  | Horizontal/Sidewall              | Category III     | AL29-4C Stainless Steel                                                                                             | None                              |
|                                                                  | Venting                          |                  | Vent Pipe**                                                                                                         | Required                          |
| Direct Venting (Outside                                          | Vertical Direct Venting          | Category I       | AL29-4C Stainless Steel                                                                                             | PVC, ABS, CPVC**                  |
| combustion air thru sealed                                       |                                  |                  | Vent Pipe**                                                                                                         |                                   |
| pipe to boiler intake.)                                          | Horizontal Direct                | Category III     | AL29-4C Stainless Steel                                                                                             | PVC, ABS, CPVC**                  |
|                                                                  | Venting                          |                  | Vent Pipe**                                                                                                         |                                   |
|                                                                  |                                  |                  | Type B Vent Pipe*                                                                                                   |                                   |
| Ducted Air*** (Using                                             |                                  |                  | (Requires a single-acting,                                                                                          |                                   |
| combustion air from outside                                      | Vertical Natural Draft           | Category I       | listed barometric damper                                                                                            | PVC, ABS, CPVC,                   |
| the building ducted                                              |                                  |                  | if vent length                                                                                                      | Galvanized Metal Duc              |
| to boiler intake.)                                               |                                  |                  | exceeds Table 5A.)                                                                                                  | Pipe**                            |

Notes:

\* A standard list type B vent terminal as supplied by the vent pipe manufacturer may be used.

\*\* Vent cap/vent terminations and combustion air intake terminations must be furnished by the boiler manufacturer in accordance with AGA/CGA requirements. <u>No substitutions</u>; unapproved substitutions may/will result in dangerous conditions, nuisance lockouts during windy conditions and premature boiler failure.

\*\*\* Cannot be used in rooms with negative pressure.

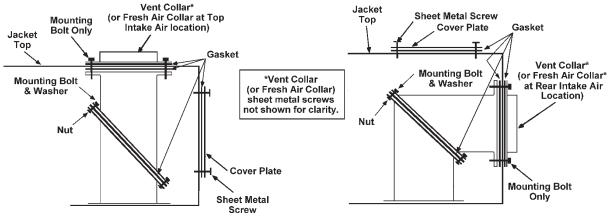



FIGURE 12. STANDARD INSTALLATION

Figure 12 shows the factory standard installation.

To change the unit to rear exhaust:

- 1. The vent collar, cover plate and jacket top must be removed.
- Remove the top portion of the flip vent assembly and rotate 90 degrees, see figure 13. Reattach the flip vent mounting bolts, washers and nuts. Attach the vent collar to the flip vent with the mounting bolts and insure all gaskets are attached

#### FIGURE 13. REAR VENT INSTALLATION

as shown in figure 13. Insure all sheet metal screws are back in place.

To change the unit to rear intake air:

1. The fresh air collar and cover plate must be switched and reinstalled similarly as shown in figure 13. Insure all sheet metal screws are back in place.

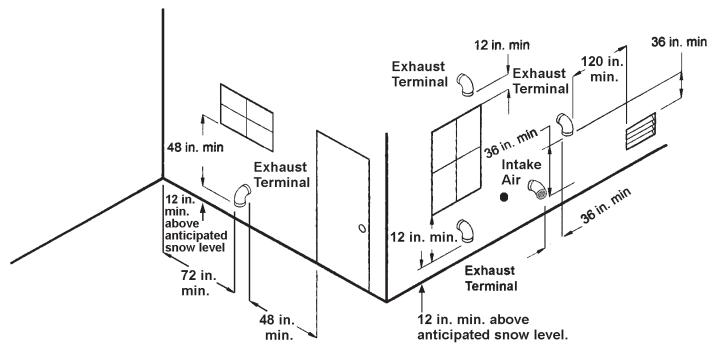



Figure 14. Vent Terminations and Installation Clearances

| Table 6. Si | ingle Unit Installation, | Suggested Pipe Size |
|-------------|--------------------------|---------------------|
|-------------|--------------------------|---------------------|

|         |    | Maximum Equivalent Pipe Length<br>Natural Gas 1,000 BTU/FT <sup>3</sup> 0.60 Specific Gravity @ 0.5 In. W.C. Pressure Drop<br>Propane Gas 2,500 BTU/FT <sup>3</sup> 1.53 Specific Gravity @ 0.60 In.W.C. Pressure Drop |    |     |     |     |     |     |     |     |   |   |
|---------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|---|---|
| BTUH    |    | 3/4"         1"         1 1/4"         1 1/2"         2"         2 1/2"                                                                                                                                                |    |     |     |     |     |     |     |     |   |   |
| Input   | N  | P                                                                                                                                                                                                                      | N  | P   | N   | P   | N   | Р   | N   | Р   | N | P |
| 199,900 | 20 | 40                                                                                                                                                                                                                     | 60 | 140 | 400 | -   | -   | -   | -   | -   | - | - |
| 300,000 | 15 | 25                                                                                                                                                                                                                     | 35 | 85  | 150 | 380 | 360 | -   | -   | -   | - | - |
| 399,900 | -  | 15                                                                                                                                                                                                                     | 25 | 60  | 100 | 260 | 250 | -   | -   | -   | - | - |
| 500,000 | -  | 10                                                                                                                                                                                                                     | 15 | 35  | 65  | 150 | 130 | 360 | 500 | -   | - | - |
| 650,000 | -  | -                                                                                                                                                                                                                      | 10 | 25  | 45  | 100 | 95  | 250 | 340 | -   | - | - |
| 750,000 | -  | -                                                                                                                                                                                                                      | -  | 20  | 35  | 80  | 75  | 180 | 260 | 600 | - | - |

#### Table 7. Suggested Pipe Size For Multiple Gas Appliances

| Nominal<br>Iron Pipe | of 1   | Maximum Capacity of Pipe in Cubic Feet of Gas per Hour for Gas Pressures<br>of 14 in. W.C. (0.5 psi) or Less and a Pressure Drop of 0.5 in W.C. based on a 0.60 Specific Gravity Gas |        |        |       |       |           |          |       |       |       |       |       |       |
|----------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|-------|-----------|----------|-------|-------|-------|-------|-------|-------|
| Size in              |        |                                                                                                                                                                                      |        |        |       | Leng  | th of Pip | e (Feet) | )     |       |       |       |       |       |
| Inches               | 10     | 20                                                                                                                                                                                   | 30     | 40     | 50    | 60    | 70        | 80       | 90    | 100   | 125   | 150   | 175   | 200   |
| 1                    | 680    | 465                                                                                                                                                                                  | 375    | 320    | 285   | 260   | 240       | 220      | 205   | 195   | 175   | 160   | 145   | 135   |
| 1 1/4                | 1,400  | 950                                                                                                                                                                                  | 770    | 660    | 580   | 530   | 490       | 460      | 430   | 400   | 360   | 325   | 300   | 280   |
| 1 1/2                | 2,100  | 1,460                                                                                                                                                                                | 1,180  | 990    | 900   | 810   | 750       | 690      | 650   | 620   | 550   | 500   | 460   | 430   |
| 2                    | 3,950  | 2,750                                                                                                                                                                                | 2,200  | 1,900  | 1,680 | 1,520 | 1,400     | 1,300    | 1,220 | 1,150 | 1,020 | 950   | 850   | 800   |
| 2 1/2                | 6,300  | 4,350                                                                                                                                                                                | 3,520  | 3,000  | 2,650 | 2,400 | 2,250     | 2,050    | 1,950 | 1,850 | 1,650 | 1,500 | 1,370 | 1,280 |
| 3                    | 11,000 | 7,700                                                                                                                                                                                | 6,250  | 5,300  | 4,750 | 4,300 | 3,900     | 3,700    | 3,450 | 3,250 | 2,950 | 2,650 | 2,450 | 2,280 |
| 4                    | 23,000 | 15,800                                                                                                                                                                               | 12,800 | 10,900 | 9,700 | 8,800 | 8,100     | 7,500    | 7,200 | 6,700 | 6,000 | 5,500 | 5,000 | 4,600 |

#### **GAS CONNECTIONS**

#### 

THIS BOILER IS NOT INTENDED TO OPERATE AT GAS SUPPLY PRESSURE OTHER THAN SHOWN ON THE RATING PLATE. EXPOSURE TO HIGHER GAS SUPPLY PRESSURE MAY CAUSE DAMAGE TO GAS VALVES WHICH CAN RESULT IN FIRE OR EXPLOSION. IF OVERPRESSURE HAS OCCURRED SUCH AS THROUGH IMPROPER TESTING OF GAS LINES OR EMERGENCY MALFUNCTION OF THE SUPPLY SYSTEM, THE GAS VALVES MUST BE CHECKED FOR SAFE OPERATION. MAKE SURE THAT THE OUTSIDE VENTS ON THE SUPPLY REGULATORS AND THE SAFETY VENT VALVES ARE PROTECTED AGAINST BLOCKAGE. THESE ARE PARTS OF THE GAS SUPPLY SYSTEM, NOT THE BOILER. VENT BLOCKAGE MAY OCCUR DURING ICE BUILD-UP OR SNOW STORMS.

WHEN LOCAL CODES REQUIRE A MAIN MANUAL SHUT-OFF VALVE OUTSIDE THE BOILER JACKET, A SUITABLE MAIN MANUAL SHUT-OFF VALVE MUST BE INSTALLED IN A LOCATION COMPLYING WITH THOSE CODES.

IT IS IMPORTANT TO GUARD AGAINST GAS VALVE FOULING FROM CONTAMINANTS IN THE GAS WAYS. SUCH FOULING MAY CAUSE IMPROPER OPERATION, FIRE OR EXPLOSION. IF COPPER SUPPLY LINES ARE USED THEY MUST BE APPROVED FOR GAS SERVICE.

BEFORE ATTACHING THE GAS LINE BE SURE THAT ALL GAS PIPE IS CLEAN ON THE INSIDE.

TO TRAP ANY DIRT OR FOREIGN MATERIAL IN THE GAS SUPPLY LINE, A DIRT LEG (SOMETIMES CALLED DRIP LEG) MUST BE INCORPORATED IN THE PIPING. The dirt leg must be readily accessible and not subject to freezing conditions. INSTALL IN ACCORDANCE WITH RECOMMENDATIONS OF SERVING GAS SUPPLIERS. REFER TO <u>NATIONAL FUEL GAS</u> <u>CODE</u>, ANSI Z223.1 OR CAN/CGA-B149.1 OR B149.2 (MOST RECENT EDITION).

To prevent damage, care must be taken not to apply too much torque when attaching gas supply pipe to gas valve gas inlet.

Fittings and unions in the gas line must be metal to metal type.

Apply joint compounds (pipe dope) sparingly and only to the male threads of pipe joints. Do not apply compound to the first two threads. Use compounds resistant to the action of liquefied petroleum gases.

THE BOILER MUST BE ISOLATED FROM THE GAS SUPPLY PIPING SYSTEM BY CLOSING ITS MAIN MANUAL GAS SHUT-OFF VALVE DURING ANY PRESSURE TESTING OF THE GAS SUPPLY PIPING SYSTEM AT TEST PRESSURES EQUAL TO OR MORE THAN 1/2 PSIG.

#### PURGING

Gas line purging is required with new piping or systems in which air has entered.

# 

PURGING SHOULD BE PERFORMED BY PERSONS EXPERIENCED IN THIS TYPE OF GAS SERVICE TO AVOID RISK OF FIRE OR EXPLOSION. PURGE DISCHARGE MUST NOT ENTER CONFINED AREAS OR SPACES WHERE IGNITION CAN OCCUR. THE AREA MUST BE WELL VENTILATED AND ALL SOURCES OF IGNITION MUST BE DEACTIVATED OR REMOVED.

BEFORE PLACING THE BOILER IN OPERATION, CHECK FOR GAS LEAKAGE. Use soap and water solution or other material acceptable for the purpose in locating gas leaks. DO NOT USE MATCHES, CANDLES, FLAME OR OTHER SOURCES OF IGNITION FOR THIS PURPOSE.

#### 1. CORRECT GAS

Make sure the gas on which the boiler will operate is the same as that specified on the boiler rating plate. Do not install the boiler if equipped for a different type gas, consult your gas supplier.

- 2A. SIZING GAS SUPPLY LINE (For single boiler installations.) See table 6.
- 2B. SIZING GAS SUPPLY LINE (For multiple installations of two or more boilers.) See table 7.

Use table 7, which is taken from ANSI booklet Z223.1, <u>NATIONAL</u> <u>FUEL GAS CODE</u>, or CAN/CGA-B149.1 or B149.2 (most recent edition) to size iron pipe or equivalent gas supply line. Table 7 is based on a pressure drop of 0.5 inches of water and a specific gravity of 0.60 approximately that of natural gas. (LP gas has an S.G. of about 1.53).

#### **TABLE 8. Multiplier Table**

| Specific<br>Gravity | Multiplier | Specific<br>Gravity | Multiplier |
|---------------------|------------|---------------------|------------|
| 0.55                | 1.04       | 1.00                | 0.78       |
| 0.60 (natural)      | 1.00       | 1.10                | 0.74       |
| 0.65                | 0.96       | 1.20                | 0.71       |
| 0.70                | 0.93       | 1.30                | 0.68       |
| 0.75                | 0.90       | 1.40                | 0.66       |
| 0.80                | 0.87       | 1.50 (Propane)      | 0.63       |
| 0.85                | 0.84       | 1.60                | 0.61       |
| 0.90                | 0.82       | 1.70                | 0.59       |

Capacities in cubic feet per hour of 0.60 specific gravity gas for different sizes and lengths of pipe are shown in table 7. No additional allowance is necessary for an ordinary number of fittings.

Where it is necessary to use more than the average number of pipe fittings (e.g., elbows, tees, and valves in gas supply line), use a pipe size larger than specified to compensate for increased pressure drop.

Applications of the gravity factor converts the figures given in table 7 to capacities with another gas of different specific gravity. Such application is accomplished by multiplying the capacities given in table 7 by the multipliers shown in table 8.

#### HIGH ALTITUDE INSTALLATIONS

WARNING INSTALLATIONS ABOVE 5,000 FEET REQUIRE REPLACEMENT OF THE BURNER ORIFICES IN ACCORDANCE WITH THE NATIONAL FUEL GAS CODE (ANSI/NFPA 54). FAILURE TO REPLACE THE ORIFICES WILL RESULT IN IMPROPER AND INEFFICIENT OPERATION OF THE APPLIANCE, PRODUCING CARBON MONOXIDE GAS IN EXCESS OF SAFE LIMITS, WHICH COULD RESULT IN SERIOUS PERSONAL INJURY OR DEATH.

These Genesis Series 200 boilers are equipped with prejet orifices which are self-regulating. This makes it unnecessary to replace these prejet orifices for high altitude installations (up to 5,000 feet only. Consult the factory for higher altitudes). These prejet orifices will automatically compensate for higher elevations and adjust the appliance's input rate accordingly. See Table 9.

Some utility companies derate their gas for altitude. You should contact your gas supplier for any specific changes which may be required in your area. Call the local gas utility to verify BTU content of the gas supplied.

Ratings specified by manufacturers for most boilers apply for elevations up to 2000 feet (600 m). For elevations above 2000 feet (600 m) ratings must be reduced by a rate of 4% for each 1000 feet (300 m) above sea level.

Example: A Genesis boiler is rated at 750,000 Btu/hr. input at sea level. At an altitude of 5,000 (1500m), the prejet orifices will decrease the input rate by 20% (=  $4\% \times 5$ ) to a new rating of 600,000 Btu/hr. (=  $80\% \times 750,000$  Btu/hr.) The input reduction is achieved by the prejet orifices through self-regulation.

#### WIRING CONNECTIONS

ALL ELECTRICAL WORK MUST BE INSTALLED IN ACCORDANCE WITH THE MOST RECENT VERSION OF <u>THE</u> <u>NATIONAL ELECTRICAL CODE/CANADIAN ELECTRICAL</u> <u>CODE</u> AND MUST CONFORM TO LOCAL REGULATIONS.

AN ELECTRICAL GROUND IS REQUIRED TO REDUCE RISK OF ELECTRIC SHOCK OR POSSIBLE ELECTROCUTION. Make the ground connection to the wire provided in the electrical supply junction box on the boiler.

Grounding and all wiring connected to this boiler must conform to the local code authority having jurisdiction or, in the absence of such requirements, with the <u>National Electrical Code</u>, ANSI/ NFPA 70 or CSA-C22.1 most recent edition.

IF ANY OF THE ORIGINAL WIRE, AS SUPPLIED WITH THE APPLIANCE, MUST BE REPLACED, IT MUST BE REPLACED WITH TYPE 105°C WIRE OR ITS EQUIVALENT.

The Genesis Hot Water Supply Boiler must be connected to a single phase line source that is:

120 volts, 60 Hertz, and 20 Amps.

The system controller, other than the factory-supplied tank probe, (e.g. Honeywell Aquastat) must be wired on the low voltage side (24VAC).

Refer to the Connection Diagram (Figure 15) and to the Schematic Diagram (Figure 16).

# Table 9: Orifice Size for Natural and Propane (LP) Gases (U.S. and Canadian Installations) (Drill size unless otherwise indicated.)

| Model     | Rating Input<br>BTUH | Number of<br>Burners | Natural | Propane |
|-----------|----------------------|----------------------|---------|---------|
| GB/GW 200 | 199,900              | 4                    | 0.091"  | 0.048"  |
| GB/GW 300 | 300,000              | 6                    | 0.091"  | 0.048"  |
| GB/GW 400 | 399,900              | 8                    | 0.091"  | 0.048"  |
| GB/GW 500 | 500,000              | 10                   | 0.091"  | 0.048"  |
| GB/GW 650 | 650,000              | 13                   | 0.091"  | 0.048"  |
| GB/GW 750 | 750,000              | 15                   | 0.091"  | 0.048"  |

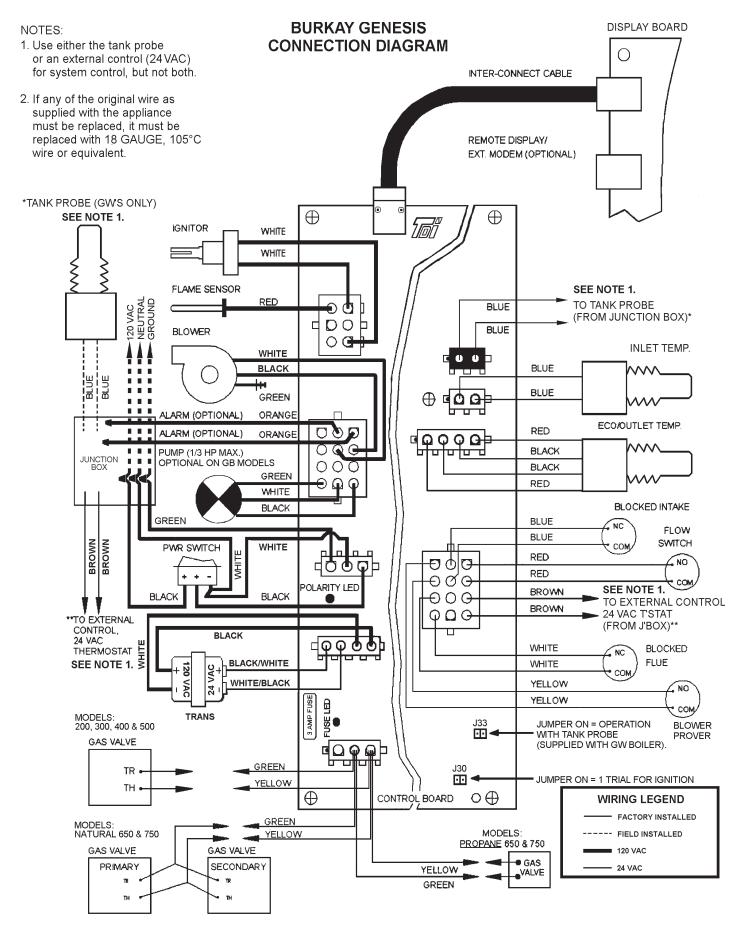
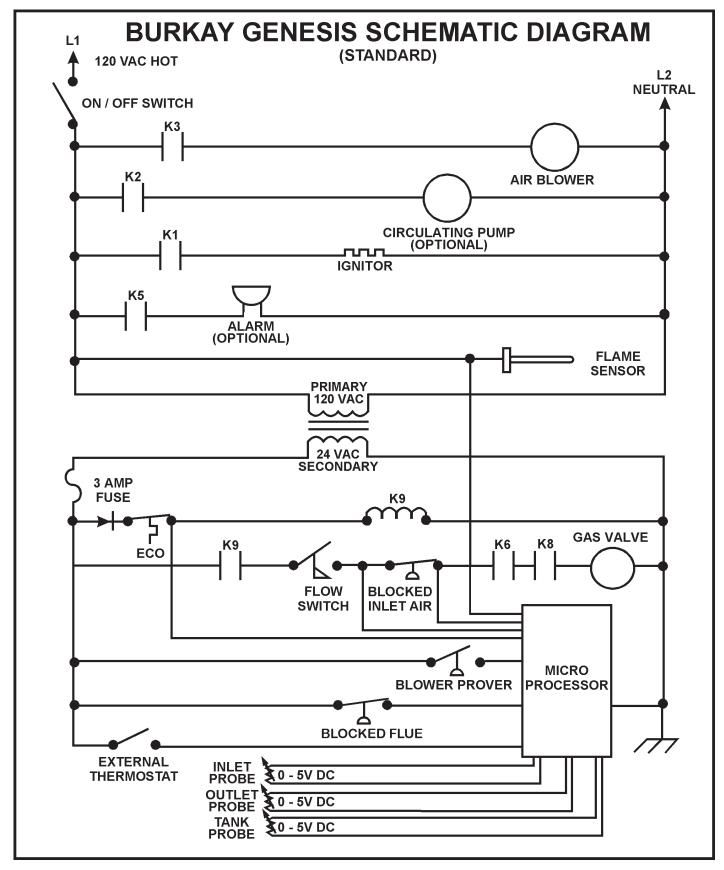
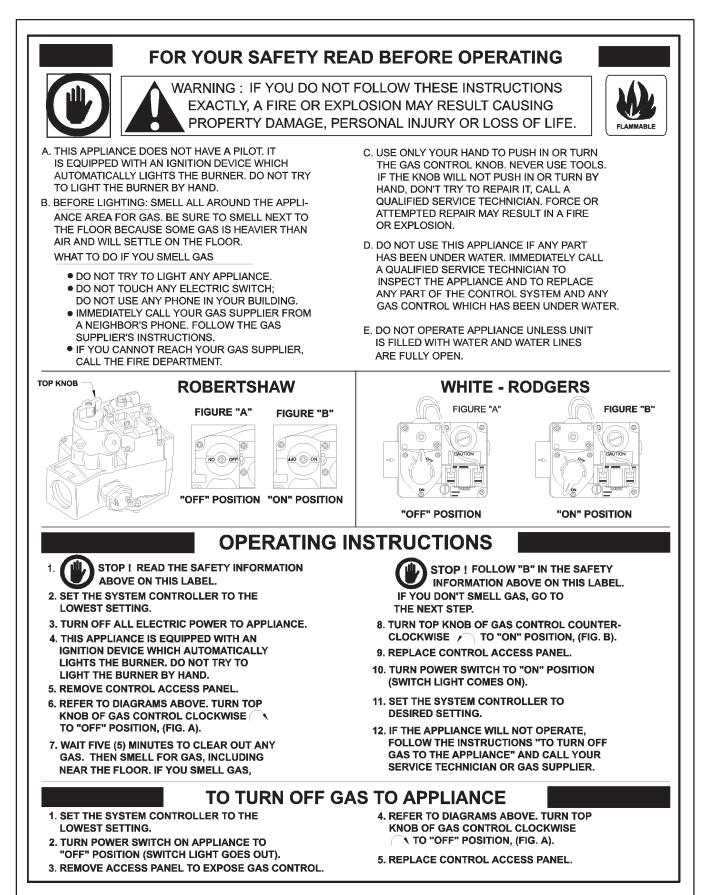



FIGURE 15. POINT TO POINT WIRING DIAGRAM

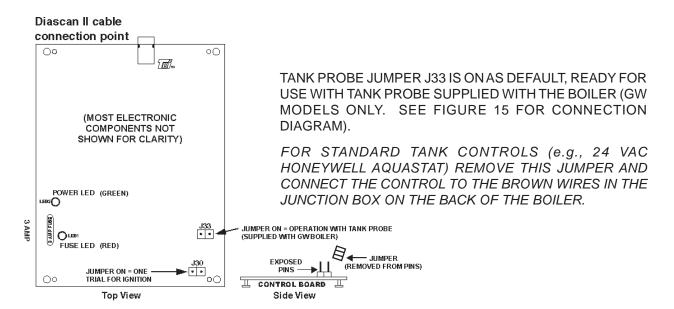



FIGURE 16. SCHEMATIC DIAGRAM



# Lighting Instructions for the G(B/W) 650 and 750 models





#### Figure 17. WHC 1502 Ignition Control Board.

There are five (5) electrical connections that must be made for the boiler to operate correctly.

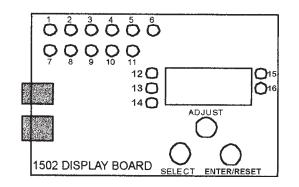
- 1. Black 120 VAC hot.
- 2. White 120 VAC neutral.
- 3. Green ground.
- 4. (2) Brown 24 VAC thermostat wires or (2) blue tank probe wires.

These connections shall be made at the rear of the unit where a junction box is provided. An electrical ground is required to reduce the risk of electrical shock or possible electrocution. A ground wire grounded to the boiler cabinet is provided in the rear junction box.

#### ELECTRONIC HOT SURFACE IGNITION CONTROL

<u>ALL MODELS</u> - The WHC1502 ignition control is a fully integrated, state of the art electronic control system. The ignition control includes a microprocessor, which governs all temperature and ignition control functions for the appliance. Inherent in the design are the normal operating sequences and safety features associated with a gas ignition control system. The ignition control continuously performs various diagnostic tests to verify proper appliance and control operation. Should an unsafe condition occur, the control will shut down the burner and illuminate the appropriate diagnostic indicators on the Display Board, indicating a need for service. All operating programs are stored in permanent memory on the ignition control and a second programmable memory is used for retaining user-specific operating parameters in the event main power is ever interrupted.

#### Line Polarity Indicator


A green LED is mounted on the ignition control board to indicate line voltage polarity is properly connected (see figure 17). When 120 VAC input power is properly connected to the Ignition Control Board, the green LED will illuminate. If an error is made when connecting 120 VAC input power, this LED will not light. Improperly connecting the input power may result in a false flame sensor failure.

#### **Fuse Protection**

The 24 VAC circuitry is protected with a 3 amp auto fuse. If the fuse opens, a red LED located near the fuse will light (see figure 17). If the red LED is illuminated, replace the fuse (recommended replacement part is Little fuse p/n 257003 automotive fuse). **Repeated failure of the fuse is an indication of possible damage to the ignition control board.** 

#### **Appliance Operating Sequence**

- 1. When power is applied to the WHC1502 ignition control, the Display board will initially run through a self-diagnostic routine, and then go into its operating mode, displaying the temperature sensed at temperature probe #1 (Outlet).
- 2. If the ignition control determines the actual outlet water temperature at the temperature sensing probe (probe #1) is below the programmed temperature set-point less the switching differential, and the thermostat circuit or tank probe circuit is closed, a call for heat is activated.
- The control then performs selected system diagnostic checks. This includes confirming the proper state of the ECO/High Limit device, flow switch, and pressure switches.
- 4. If all checks are successfully passed, the circulating pump circuit is energized, then the combustion blower circuit is energized for the 20 second pre-purge cycle.
- 5. When the pre-purge cycle is complete, power is applied to the ignitor element for the ignitor warm-up period (pump and blower should continue to run).
- 6. The control will verify ignitor current. After the verification, the gas valve will open, allowing gas to enter the burner.
- After an additional 1 second, the control will monitor the flame sense probe to confirm a flame is present. If a flame is not verified within 4 seconds, the gas valve is immediately closed. The control will return to step 2, unless jumper J30 is in place (on), see fig. 17.
- 8. If a flame is confirmed, the control will enter the heating mode where it will continue heating until the set-point temperature is reached, and the thermostat circuit is open. At that point, the gas valve is closed and the control enters the post-purge and post-circulate cycles.



Note: One extra fuse is supplied with the boiler.

Figure 18. Dia-Scan II Display Board (Simplified).

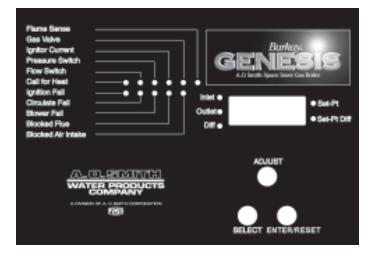



Figure 19. Dia-Scan II Display Board Label.

- 9. The combustion blower will run for a 25 second post purge cycle. When the post purge cycle is complete, the blower is de-energized and will coast to a stop. The circulating pump will continue with the post-circulate cycle for the programmed amount of time (factory default 45 seconds). See circulating pump adjustment procedure on page 21 of the manual.
- 10. The control now enters the idle state while continuing to monitor temperature and the state of other system devices. If the outlet water temperature drops below the set-point value minus the switching differential, and the thermostat circuit or tank probe circuit closes, the control will return to step 2 and repeat the entire operating cycle. During this idle state, if the control detects an improper operating state for external devices such as the ECO switch, air pressure switch, gas pressure switch, etc., the appropriate LED(s) on the Display Board will illuminate indicating the nature of the fault.

#### DIA-SCAN II DISPLAY BOARD OPERATING PROCEDURES

The Display Board provides a user-friendly interface to the WHC1502 Ignition Control Board. With the Display Board, the user can control appliance functions and view the overall operating status of the appliance. If an error condition occurs, the Display Board will scroll a diagnostic message across the LED display. Under normal operating conditions, the four digit LED display on the Display Board will continuously illustrate the water temperature sensed at temperature probe #1 (Outlet). The push buttons on the Display Board allow the user to program and view the desired water temperature set point. The Display Board is connected to the Ignition Control Board through a 6 conductor cable assembly with modular plug terminations. In addition, an 8 conductor modular jack on the Display Board allows for connecting a remote display board.

When power is applied to the WHC1502 System, the Display Board will initially run through a self-diagnostic test, and then display the Outlet temperature. To display a specific setting or temperature, press the SELECT push-button until the appropriate LED is illuminated (see figure 19). After 5 seconds, the Display Board will automatically revert to displaying the Outlet temperature. Pressing the ENTER/RESET push-button will hold the display in the indicated mode until the SELECT push-button is pressed.

With the display board, the user can make adjustments to many of the appliance's control features. This includes the following:

#### **Options/Features Setting Procedures**

- Set Appliance Temperature Set-point Value
- Set Appliance Switching Differential Value
- Select Appliance Post-Circulate Time
- Set Appliance Circulating Pump to Continuous ON Mode
- Check Appliance Cycle Count
- Control the water temperature in a storage tank

#### **Green Status Lights**

- LED 1: Call for Heat
- LED 2: Flow Switch
- LED 3: Pressure Switch
- LED 4: Ignitor Current
- LED 5: Gas Valve
- LED 6: Flame Sense

#### **Red Fault Lights**

- LED 7: Ignition Fail
- LED 8: Circulate Failure
- LED 9: Blower Failure
- LED 10: Blocked Inlet

# LED 11: Blocked Flue

- Water Temperature Set Lights
- LED 12: Inlet Water Temperature\* LED 13: Outlet Water Temperature
- LED 13. Outlet Water Temperature
- LED 14: Inlet/Outlet Differential Temperature
- LED 15: Set-Point Temperature
- LED 16: Outlet/Set-Point Differential Temperature
- \* Defaults to tank probe temperature when tank probe is used.

#### **Temperature Set-point Adjustment Procedure**

The control board has a standard programmable temperature set-point range of 110°F to 240°F. The user can easily change the temperature set-point at any time by using the following procedure. In all cases, you must apply input power to the controller to perform any programming operations. The factory default setting is 180°F.

To change or view the current programmed temperature set-point value:

- 1. Press the SELECT push-button on the display board until both the Set-Pt LED (LED 15, see figure 18) and Outlet Water Temperature LED (LED 13, see figure 18) are illuminated.
- 2. The LED display will show the current set-point temperature.
- 3. Press and hold the ADJUST push-button. The displayed temperature will either increase or decrease. To alternate between increasing or decreasing the temperature, release then press and hold the ADJUST push-button.
- 4. When the desired set-point temperature is reached, release the ADJUST push-button.
- 5. Press the ENTER/RESET push-button once, this enters the selected set-point temperature into controller memory.
- 6. The appliance will now control the temperature to the desired set-point value.
- NOTE: The boiler must complete a full cycle in order for the new setting to take effect. If the unit is turned off prior to a complete cycle the setting will be lost and the previous setting will remain in effect.

If the ADJUST push-button is held down long enough, the setpoint will reach 110°F, the minimum value (or 240°F, the maximum value) and stop. At this point, if the desired set-point is not obtained, release the ADJUST push-button and depress it again. The set-point value will now restart at 110°F (240°F) and once again increase (decrease) in value for as long as the ADJUST push-button is pressed.

#### Switching Differential Adjustment Procedure

To facilitate proper operation and maximize appliance performance, the control has a programmable operating switching differential or "hysteresis" about the set point. This means a call for heat will become active when the water temperature measured at the outlet temperature sensing probe (Probe #1) drops to the set-point value minus the switching differential value. The burner will remain on until the water temperature measured at probe #1 reaches the set-point value. The switching differential value is fully programmable from 5°F to 50°F using the push-button(s) located on the Display Board. The default is set at 20°F.

To change or view the current programmed switching differential:

- Press the SELECT push-button on the display board until the Set-Pt differential LED (LED 16, see figure 18) is illuminated.
- 2. The LED display will show the current switching differential.
- 3. Press and hold the ADJUST push-button. The displayed value will either increase or decrease. To alternate between increasing or decreasing the switching differential, release then press and hold the ADJUST push-button.
- 4. When the desired switching differential is reached, release the ADJUST push-button.
- Press the ENTER/RESET push-button once, this enters the selected switching differential value into controller memory.
- 6. The appliance will now control temperature utilizing the desired switching differential value.

If the ADJUST push-button is held down long enough, the switching differential setting will reach 5, the minimum value (or 50, the maximum value) and stop. At this point, if the desired switching differential is not obtained, release the ADJUST push-button and depress it again. The switching differential value will now restart at 5 (50) and once again increase (decrease) in value for as long as the ADJUST push-button is pressed.

#### **Circulating Pump Adjustment Procedure**

The Controller is factory set with a 45 second post circulate function. With the Display Board, the user has the capability to choose between a 45, 90, or 180 second post circulate time period, or turn the pump on continuously. This provides flexibility in selecting the post circulate time to meet specific installation requirements, and improves the efficiency of the circulating pump operation.

To change or view the current programmed post-circulating time:

- 1. Press the SELECT push-button on the display board until the LED display reads OPt (Options).
- 2. To enter into the options mode, press the ENTER/RE-SET push-button.
- 3. The display will illustrate Circ. Enter this mode by pressing the ENTER/RESET push-button.

The display will now illustrate the current post circulate time. Press the ADJUST push-button to select the desired post circulate time (45, 90, 180, On).

4.

5.

- 5. When you have selected the desired post circulate time mode, press the ENTER/RESET push-button once, this enters the selected post circulate time into controller memory.
- 6. The display will automatically return to illustrating the outlet temperature.

#### **Display Current Mode**

In this mode, the Display Board will illustrate the current functional step in the appliance operational sequence. For example, if the appliance is performing Ignitor Warm-up, the display will illustrate IGnt. To enter into this mode, perform the following steps:

- 1. Press the SELECT push-button on the display board until the LED display reads OPt (Options).
- 2. To enter into the options mode, press the ENTER/RE-SET push-button.
- 3. The display will illustrate Circ. Press the SELECT pushbutton until the display illustrates StEP. Enter this mode by pressing the ENTER/RESET push-button.
- 4. The display will illustrate the current appliance operating step.
  - The display will automatically resort to illustrating the outlet temperature, after five (5) seconds. To keep the display in the Display Step Mode, press ENTER/RESET twice in step 3.

| Display Message<br>IdLe<br>NoSn<br>CrSn<br>Circ<br>PrSn | Appliance Mode<br>Idle state<br>Wait for No Sensor Inputs<br>Wait for Circulate Sense<br>Circulate Pump is ON<br>Wait for Blower Pressure<br>Sense |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| PreP                                                    | Pre-Purge state                                                                                                                                    |
| IGnt                                                    | Ignitor Warm-up                                                                                                                                    |
| rEdn                                                    | Turn ON redundant Gas<br>Valve relay                                                                                                               |
| IAct                                                    | Turn ON Gas Valves                                                                                                                                 |
| StAb                                                    | Turn OFF Ignitor and wait<br>for Flame Sense Stabiliza-<br>tion                                                                                    |
| HEAt                                                    | Heat Mode                                                                                                                                          |
| PoPC                                                    | Post Purge and Post Cir-<br>culate                                                                                                                 |
| Po C                                                    | Post Circulate                                                                                                                                     |

#### Display Total Cycle Count

The Main Control Board counts the number of cycles the appliance has operated. In the Main Control Board, a cycle is counted every time the gas valve is energized. To access this number, perform the following procedure:

- 1. Press the SELECT push-button on the display board until the LED display reads OPt (Options).
- 2. To enter into the options mode, press the ENTER/RE-SET push-button.
- 3. The display will illustrate Circ. Press the SELECT pushbutton until the display illustrates Count. Enter this mode by pressing the ENTER/RESET push-button.
  - The display will now illustrate the current number of cycles the appliance has cycled through.
  - The display will automatically resort to illustrating the outlet temperature.

4.

5.

#### TANK PROBE INSTALLATION PROCEDURE

A tank probe is supplied with each hot water supply boiler (GW). When installed on a tank, the inlet water temperature on the Dia-Scan II will default to the tank temperature. See figures 15 and 17 to add the tank jumper to the control board so that the tank probe is active.

Refer to figure 21 for connecting the tank probe to the boiler.

A tank probe is NOT supplied with the hydronic heating boilers (GB's). Therefore, a loop or operating thermostat must be provided. This field-supplied operating thermostat should be wired to the BROWN wires at the junction box. The jumper at location J33 on the control board must NOT be on. Refer to figures 15 and 17 for the location of this jumper.

#### Tank Probe Set-Point Adjustment

When the tank probe is installed in a water tank, and the tank probe is used with the WHC1502 system, the controller will monitor and control the temperature of the water at the tank probe location. Setting the temperature is accomplished through the Dia-Scan control display. The programmable temperature range is  $110^{\circ}$ F to  $190^{\circ}$ F. The switching differential of the probe is fixed at  $5^{\circ}$ F.

#### Tank Probe Temperature Set-point Adjustment Procedure

The user can easily change the tank probe temperature set-point at any time by using the following procedure:

1. Press the SELECT push-button on the display board until both the Set-Pt LED (LED 15, see figure 18) and Inlet Water Temperature LED (LED 12, see figure 18) are illuminated.

NOTE: When a tank probe is connected to the board at location CN10, the Inlet Water Temperature LED defaults to Tank Water Temperature.

- 2. The LED display will show the current set-point temperature.
- 3. Press and hold the ADJUST push-button. The displayed temperature will either increase or decrease. To alternate between increasing or decreasing the temperature, release then press and hold the ADJUST push-button.
- 4. When the desired set-point temperature is reached, release the ADJUST push-button.
- Press the ENTER/RESET push-button once, this enters the selected tank set-point temperature into controller memory.
- 6. The appliance will now control the water temperature to the desired set-point value.

If the ADJUST push-button is held down long enough, the setpoint will reach 110°F, the minimum value (or 190°F, the maximum value) and stop. At this point, if the desired set-point is not obtained, release the ADJUST push-button and depress it again. The set-point value will now restart at 110°F (190°F) and once again increase (decrease) in value for as long as the ADJUST push-button is pressed.

# 

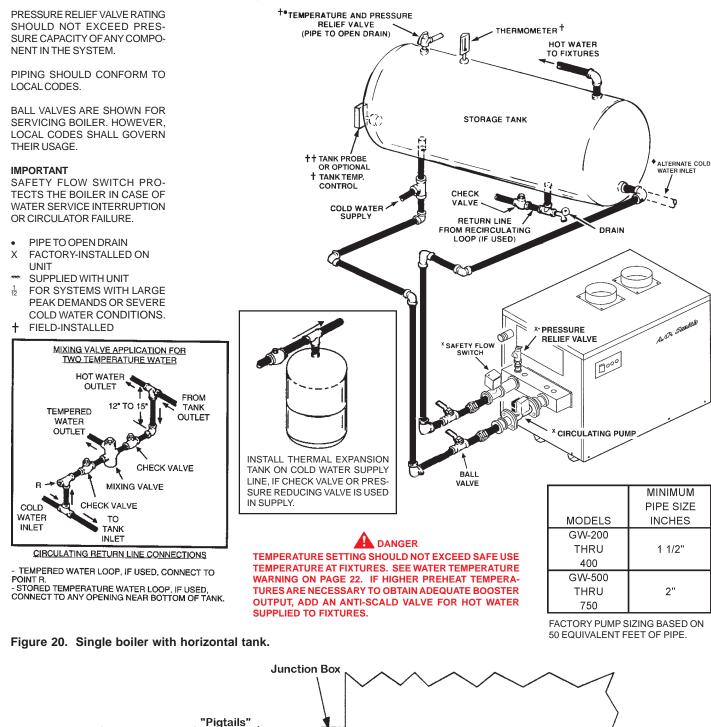
HOT WATER TEMPERATURES REQUIRED FOR AUTOMATIC DISHWASHER AND LAUNDRY USE CAN CAUSE SCALD BURNS RESULTING IN SERIOUS PERSONAL INJURY AND/ OR DEATH. THE TEMPERATURE AT WHICH INJURY OCCURS VARIES WITH THE PERSON'S AGE AND TIME OF EXPOSURE. THE SLOWER RESPONSE TIME OF DISABLED PERSONS INCREASES THE HAZARDS TO THEM. NEVER ALLOW SMALL CHILDREN TO USE A HOT WATER TAP, OR TO DRAW THEIR OWN BATH WATER. NEVER LEAVE A CHILD OR DISABLED PERSON UNATTENDED IN A BATHTUB OR SHOWER.



THE WATER HEATER SHOULD BE LOCATED IN AN AREA WHERE THE GENERAL PUBLIC DOES NOT HAVE ACCESS TO SET TEMPERATURES.

It is recommended in storage tank applications that lower water temperatures be used to avoid the risk of scalding. It is further recommended, in all cases, that the water temperature be set for the lowest temperature which satisfies the user's hot water needs. This will also provide the most energy efficient operation of the boiler and minimize scale formation in the heat exchanger, thus prolonging the life of the boiler.

SETTING THE WATER HEATER TEMPERATURE AT 120°F WILL REDUCE THE RISK OF SCALDS. Some states require settings at specific lower temperatures. Table 10 below shows the approximate time-to-burn relationship for normal adult skin.


#### TABLE 10. Risk of Scalds

| Temperature<br><u>Setting</u> | Time to Produce 2nd & 3rd<br>Degree Burns on Adult Skin |
|-------------------------------|---------------------------------------------------------|
| Over 170°F                    | Nearly instantaneous                                    |
| 160°F                         | About 1/2 second                                        |
| 150°F                         | About 1-1/2 seconds                                     |
| 140°F                         | Less than 5 seconds                                     |
| 130°F                         | About 30 seconds                                        |
| 120°F or less                 | More than 5 minutes                                     |

USE ANTI-SCALD VALVE(S) in the hot water system to reduce the risks of scalding at points of use such as lavatories, sinks and bathing facilities.

A change in water temperature in the storage tank lower than the Tank Probe setting (minus 5°F differential) will cause the boiler to start.

#### ONE GENESIS (MODEL GW) HOT WATER SUPPLY BOILER WITH HORIZONTAL TANK



Field-supplied wires between tank probe and junction box with 1/2" field-supplied conduit. "Pigtails" of field-supplied wires should be spliced to "pigtails" of tank probe and to "pigtails" at the junction box. This conduit and wiring should be separate from any other conduit/wiring to guard against EMI (electromagnetic interference).

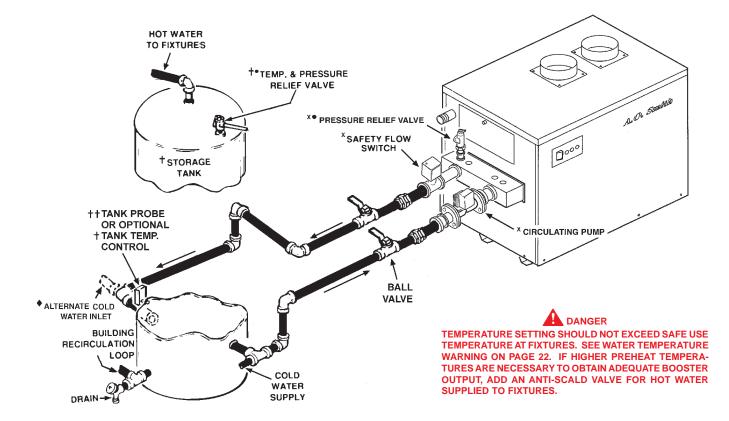
Remote Sensor Wires (Blue)

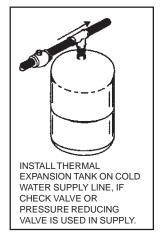
Figure 21. Tank probe installation.

Tank Probe

# ONE GENESIS (MODEL GW) HOT WATER SUPPLY BOILER WITH VERTICAL TANK

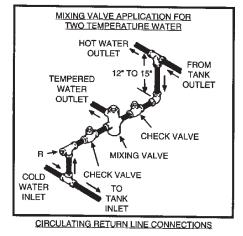
PRESSURE RELIEF VALVE RATING SHOULD NOT EXCEED PRESSURE CAPACITY OF ANY COMPONENT IN THE SYSTEM.


PIPING SHOULD CONFORM TO LOCAL CODES.


BALL VALVES ARE SHOWN FOR SERVICING BOILER. HOWEVER, LOCAL CODES SHALL GOVERN THEIR USAGE.

#### IMPORTANT

SAFETY FLOW SWITCH PROTECTS THE BOILER IN CASE OF WATER SERVICE INTERRUPTION OR CIRCULATOR FAILURE.


- PIPE TO OPEN DRAIN
- Х FACTORY INSTALLED ON UNIT
- -SUPPLIED WITH UNIT
- FOR SYSTEMS WITH LARGE PEAK DEMANDS OR SEVERE COLD WATER CONDITIONS.  $\frac{1}{12}$
- FIELD-INSTALLED





|        | MINIMUM   |
|--------|-----------|
|        | PIPE SIZE |
| MODELS | INCHES    |
| GW-200 |           |
| THRU   | 1 1/2"    |
| 400    |           |
| GW-500 |           |
| THRU   | 2"        |
| 750    |           |





TEMPERED WATER LOOP, IF USED, CONNECT TO POINT R. - STORED TEMPERATURE WATER LOOP, IF USED, CONNECT TO ANY OPENING NEAR BOTTOM OF TANK.

Figure 22. Single boiler with vertical tank.

#### AUXILIARY EQUIPMENT INSTALLATION

The following is a brief description of the equipment required for installations noted in this manual. All installations must comply with local codes.

The boilers described in this manual may be used for space heating or for the heating of potable water. If the heater is to be used for hydronic space heating, follow the instructions on pages 25 and 26 given for equipment required for installation on page 27. However, if units are to be used for heating potable water, the information describing specific systems is found starting on page 27. Installations must comply with all local codes.

#### WATER SUPPLY LINE

These boilers can be used ONLY in a forced circulation hot water heating system. Since most forced circulation systems will be of the closed type, install the water supply line as shown on piping diagrams, figures 20 and 22.

Fast filling of large pipe, old radiator installations (where high pressures are not available) requires bypassing of the pressure reducing valve. Generally, pressure purging is not possible with a well pump system. High point air venting is essential.

If the system is of the open type, a pressure reducing valve will not be required as the water supply to the system will be controlled by a manually operated valve. An overhead surge tank is required. <u>A MINIMUM PRESSURE OF 15 PSI MUST BE MAINTAINED</u> <u>ON THE BOILER AT ALL TIMES</u> to avoid potential damage to the boiler that may not be covered by the warranty.

#### **EXPANSION TANK**

If the system is of the closed type, install an expansion tank as shown in fig. 23. <u>The sizing of the expansion tank for a closed</u> <u>system is very important</u> and is directly related to the total water volume of the system. Refer to ASME or other reliable specifications for sizing.

An air separator as shown in the piping diagrams is recommended especially for modern commercial hydronic systems.

#### **VENT VALVES**

It is recommended that automatic, loose key or screwdriver type vent valves be installed at each convector or radiator.

#### SYSTEM HEADERS

Split systems with individual supply and return lines from the boiler room should normally have this piping connected to supply and return manifold headers near the boiler. To achieve good water distribution with minimum pressure drop for several circuits, manifolds should be larger than system loops.

The circuits should be spaced on the header at a minimum of 3" center to center. Install a balancing cock in each return line.

Manifold headers are recommended for split systems with or without zone valves and also those installations with zone circulators. If the system is to be split at remote points, good practice requires special attention be given to main pipe sizing to allow balancing of water flow.

#### **COOLING PIPING**

When the boiler is used in conjunction with a refrigeration system it must be installed so that the chilled medium is piped in parallel with the boiler. Appropriate valves, manual or motorized, must be provided to prevent the chilled medium from entering the boiler. Water temperature in the heating system must be reduced to less than 100°F before cooling system is started, or damage to the chiller unit may occur.

If the boiler is connected to chilled water piping or heating coils exposed to refrigerated air, the boiler piping system must be equipped with flow control valves or other automatic means to prevent gravity circulation through the boiler during the cooling cycle.

Primary/secondary pumping of both the chiller(s) and the boiler(s) is an excellent winter-summer change-over method, because cooling flow rates are much more than heating flow rates. In this way each system (heating or cooling) is circulated independently.

#### SYSTEM INSTALLATION

#### GENERAL

If the system is to be filled with water for testing or other purposes during cold weather and before actual operation, care must be taken to prevent a down draft entering the boiler or freezing air from contacting the system. Failure to do so may cause the water in the system to freeze with resulting damage to the system. Damage due to freezing is not covered by the warranty.

Good practice requires that all piping, etc., be properly supported.

#### CONVENTIONAL SPACE HEATING INSTALLATION

Modern fin type boilers are exceptionally fast heating units. The low water volumes in relation to firing rates require special attention to water flow rates for smooth, efficient operation. These considerations for the A. O. Smith copper heat exchanger boilers are covered below.

Refer to table 4 showing flow rate vs. pressure drop and temperature rise.

Figure 23 shows a typical installation of the boiler.

A system with several flow controlled zones, or with a 3-way mixing valve system could present a flow rate to the boiler of less than required for a maximum of 50<sup>0</sup>F temperature rise. Such a system should be designed with compensating bypasses to the boiler.

A system bypass should be installed as shown in figure 23 to prevent boiler circulation starvation when the system zones call for reduced flow.

This bypass may also be used with multiple boilers manifolded for reverse-return flow. The system bypass would be installed from boiler outlet to suction side of pump.

#### INSTALLATION AS BOILER REPLACEMENT

Installation as boiler replacement on an old system with large water volume may result in condensation within the boiler on cold starts. This condensing of water vapor in the combustion area can be prevented if a portion of the system water flow is diverted past the boiler to cause an increase in boiler temperature rise.

#### BYPASS BALANCING

With systems where water temperature can be expected to drop appreciably due to long standby periods, or heavy draw down, a bypass pipe of at least 1" size with a balancing cock should be installed between the boiler inlet and outlet (see figure 23). When the system first starts, the valve should be slowly opened until the condensing ceases. This adjustment remains at a permanent setting to establish required temperature rise across the boiler.

#### SPACE HEATING APPLICATIONS

Controlling of these systems is decided mainly by the type of building system controlling that is desired. A single boiler installation might be controlled directly from space temperature thermostat(s). Multiple boiler installations are more effective when the boilers are sequenced in and out of operation by some form of main water temperature controller. With one or two boilers, individual control set at progressive temperature may be used. For more than two boilers, electronic sequencing controlling is recommended.

Individual controls, or the separate stages of a step controller, should fire a boiler and also start the boiler loop circulator whenever that boiler is fired. Some large installations may require the firing of more than one boiler per stage.

The system or primary circulator may or may not be controlled by the boiler sequencer. When this pump is operated through the first switch of any type of step controller, care should be taken to determine if a motor starter is needed due to insufficient switch capacity.

If the primary pump is controlled by a manual switch or any other controllers, the electric current supply to the boiler group should be through the primary pump controller. The fast response of A.O. Smith boilers eliminates any need to maintain boiler temperature when the system is satisfied. Wiring should always prevent firing of boiler(s) when there is no water flow in the mains.

Installation diagrams show safety flow switches in the outlet piping from each boiler as good protection against any boiler being fired when the boiler loop circulator is not in operation. These safety flow switches will also provide some protection if there is a loss of water.

Multiple boiler installations are especially adapted to the use of outdoor reset for main water temperatures. This feature is not mandatory but offers smooth, efficient operation of a modern system.

Outdoor reset systems should utilize an automatic shutdown control if there is a continuous recirculating main and/or if the entire building is not under control of space temperature thermostats. A single bulb outdoor sensing control will serve this requirement. This precaution will prevent overheating of halls, stairways or other uncontrolled areas. There are occasions when outdoor temperatures are temporarily too warm for even a moderate amount of heating in these areas.

Space temperature controlling can be varied to meet the building requirements. Either the single thermostat, or multiple zone thermostats should control a common relay. This relay controls electric power to the system primary circulator and to the main water temperature controller. This provides for water movement in the system before the main temperature controller can start the secondary circulating pump or fire the boiler.

#### SPACE HEATING INSTALLATIONS

## A. New Installation

Figure 23 shows piping and accessory arrangement for 1 or more boilers pumped independently of the primary system mains. Pipe sizing and boiler loop pump selection data, are shown in table 2 for several different temperature rises across various boiler sizes. Total heating requirements for the building can be supplied by a series of boiler loops all connecting to a common pipe joining the system supply and return mains. The supply and return branches of each boiler loop must join the common pipe only a short nipple length apart. The different sets of branches should be installed reasonably close together, but not necessarily to the short nipple length as required for the supply and return of each set. These branches may be made with tees or with welded connections.

The installer is reminded that the total boiler flow rates do not have to match the system flow rate. Flow rates through heat generator type boilers establish temperature rises. The deciding factor in choice of boiler temperature rise relates to the boiler inlet temperature. Boiler outlet, minus system temperature drop, is boiler inlet temperature. THE BOILER TEMPERATURE RISE SHOULD NOT RAISE THE OUTLET TEMPERATURE UP TO THE MAXIMUM 240°F (115°C) SETTING OF THE AUTOMATIC RESET LIMIT CONTROL.

If inlet temperature (plus temperature rise) of any boiler on the group exceeds 240°F (115°C), that boiler and all downstream boilers will shut down.

B. Commercial Boiler Replacements

Application of Genesis to a commercial boiler replacement with an old multiple pump installation is an excellent way to modernize the system. The A. O. Smith boiler(s) should be installed on a pipe loop with a separate circulating pump. Use table 2 to determine pipe sizes and operating ranges.

The following illustration shows how the system headers should be connected to pipe loop that is installed with the replacement boiler(s). Make-up water connections, and accessories are not shown.

Supply and return headers of the old system should be connected to the boiler loop with a pair of tees set close together. The boiler loop pump and the boiler(s) should be wired to operate only when any of the system pumps are in operation. The number of zone pumps that may be in operation at any particular time will take their required flow rate out from the first tee in the boiler piping. This water will be circulated through the proper branches from the supply header to the zones calling for heat. The water will be brought back to the return header and then into the second tee in the boiler pipe loop. There will be no conflict between the boiler pump and the zone pumps when the two tees in the boiler loop are placed close together.

Normal use of flow control valves is required to prevent cross circulation of zones as with any multiple pump system.

Large systems with multiple boilers should include main water temperature controls (with or without outdoor reset) to sequence the boiler on and off, in relation to the load on the system.

#### **LEGEND FOR FIGURE 23**

- 1. PAIR OF SHORT PIPE NIPPLES, PAIR OF BOILER LOOP TEES AND BALL VALVE BETWEEN SYSTEM SUPPLY AND RETURN -ONE SET PER EACH BOILER
- 2. BOILER PIPE LOOP (See Pipe Sizing Data Table 2.)
- 3. BOILER CIRCULATING PUMP (See Pipe Sizing Data Table 2.)
- 4. THERMOMETER
- 5. PRESSURE GAUGE
- 6. LOW WATER CUTOFF (If Required By Local Code.)
- 7. SAFETY FLOW SWITCH (Factory-Installed)
- 8. PRESSURE RELIEF VALVE [PRV] (Factory-Installed)
- 9. BOILER INLET OUTLET
- 10. SYSTEM SUPPLY TEMPERATURE THERMOMETER
- 11. DRAIN or BLOW-DOWN VALVE

#### HOT WATER SUPPLY APPLICATIONS

#### WATER LINE CONNECTIONS

Where excessive heat exchanger condensation exists due to continued low inlet water temperatures (below 120°F), a bypass balance loop must be installed (see figure 23).

#### HARD WATER CONDITIONS

Where hard water conditions exist, water softening or the threshold type of water treatment is recommended. This will protect the dishwashers, coffee urns, water heaters, water piping and other equipment. When water softening or water treatment is not practical, a comparatively easy method of periodic lime removal from the unit must be employed.

## 

Lime accumulation can reduce the life of the equipment, reduce efficiency and waste fuel. Boiler failure due to lime or scale buildup voids the warranty.

#### **INTERNAL CONTAMINANTS**

The system must be internally cleaned and flushed after a new or replacement unit has been installed to remove contaminants that may have accumulated during installation. This is doubly important when a replacement unit is installed into an existing system where Stop Leak or other boiler additives have been used.

All systems should be completely flushed with a grease removing solution to assure trouble-free operation. Pipe joint compounds. soldering paste, grease on tubing and pipe all tend to contaminate a system.

Failure to clean and flush the system can cause solids to form on the inside of the heat exchanger, can produce acid concentrations that become corrosive, can allow excessive amounts of air or other gases to form which could block circulation, foul system accessories and damage circulator seals and impellers.

WATER PRESSURE

REDUCING VALVE (BYPASS FOR FAST FILL)

PUME

It is recommended that after installation, the boiler and system when filled should include the proper percentage of cleaning solution related to approximate water volume of the system. Fire and circulate for about one hour and then flush clean with fresh water. Commercial grease removing solutions are available.

Before operating the boiler, the entire system must be filled with water, purged of air and checked for leaks. Do not use Stop Leak or other boiler compounds. The gas piping must also be leak tested.

#### PRECAUTIONS

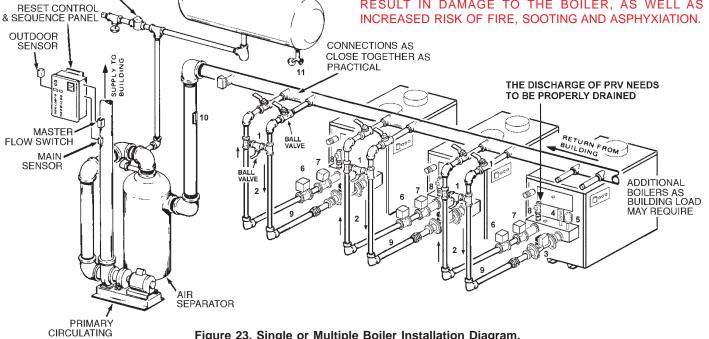
If the unit is exposed to the following, do not operate boiler until all corrective steps have been made by a qualified serviceman:

- 1. Exposure to fire.
- 2. If damaged.
- 3. Firing without water.
- 4. Sooting.

If the heater has been exposed to flooding it must be replaced.

#### **IMPORTANT**

ONLY QUALIFIED PERSONNEL SHALL PERFORM THE INITIAL FIRING OF THE HEATER. AT THIS TIME THE USER SHOULD NOT HESITATE TO ASK THE INDIVIDUAL ANY QUESTIONS REGARDING THE OPERATION AND MAINTENANCE OF THE UNIT.


#### FILLING AND VENTING

- Fast fill system through bypass until pressure approaches 1. desired system pressure. Close bypass valve and permit pressure to be established by the pressure reducing valve.
- 2. Vent all high points in system to purge system of air.

Provisions should be made to permit manual venting of radiators or convectors.

#### **IMPORTANT**

UNDER NO CIRCUMSTANCES SHALL THE GAS PRESSURE MEASURED AT THE BURNER MANIFOLD EXCEED THAT STATED ON THE BOILER RATING PLATE. OVERFIRING WILL RESULT IN DAMAGE TO THE BOILER, AS WELL AS



EXPANSION

TANK

#### Figure 23. Single or Multiple Boiler Installation Diagram.

#### MAIN BURNERS

Check main burners every three months for proper flame characteristics.

The main burner should display the following characteristics:

- Provide complete combustion of gas.
- Cause rapid ignition and carry over of flame across entire burner.
- Give reasonably quiet operation during initial ignition, operation and extinction.
- Cause no excessive lifting of flame from burner ports (see fig. 24).

If the preceding burner characteristics are not evident, check for accumulation of lint or other foreign material that restricts or blocks the air openings to the burner or boiler.

NOTE: Cleaning of main burners.

Shut off all gas and electricity to unit.

- 1. Remove main burners from unit.
- 2. Check that burner venturi and ports are free of foreign matter.
- Clean burners with bristle brush and/or vacuum cleaner. DO NOT distort burner ports.
- 4. Reinstall burners in unit. Ensure that all the screws on the burner flange are tightened securely so that the gasket will provide a good seal. Also, ensure that each orifice is centered with the venturi opening of every burner. Refer to the illustration and Note 1 of the PSD Parts List, Part No. 210312-000.

Also check for good flow of combustion and ventilating air to the unit.

After placing the boiler in operation, check the ignition system safety shut-off devices for proper operation. To accomplish this with the main burners operating, close the valve on the manifold. Within four seconds the main burners should extinguish. If this does not occur, discontinue gas supply by closing main manual shut-off and call a qualified serviceman to correct the situation. If the burners extinguish, then light boiler in accordance with lighting and operating instructions.

For installations above 2000 feet (600 m), refer to HIGH ALTITUDE INSTALLATIONS in the installation section.

#### PRE-TROUBLESHOOTING

Before any extensive troubleshooting, ensure that:

- Power (120 VAC) is supplied to the appliance.
- System control (tank probe, thermostat, etc.) is calling for appliance operation (call for heat).
- Other contacts (switches) are closed (low water cutoff, flow switch, limit controls, pressure switches, etc.)
- Gas supply pressure is within the maximum and minimum operating ranges listed on the appliance rating plate/label.
- Appliance is wired according to wiring diagram.
- **NOTE:** Shorting the thermostat wiring to ground in the 24 volt circuit will blow the 3 amp fuse.

- All wire terminals/connectors are firmly attached to valves, modules, switches, limit controls, etc.
- There has been no damage caused by freezing, inoperative pumps, etc.

#### TROUBLESHOOTING IGNITION SYSTEM

#### **Display Board LED Indicators**

The Display Board contains eleven (11) solid state LED indicators for viewing various states of appliance operation and for troubleshooting if problems occur. Under normal operating conditions, the appropriate LEDs will sequence with steady illumination according to the particular appliance operating state. In cases where problems or a lockout occurs, the appropriate LEDs will illuminate indicating the general area where the problem exists.

A description of the LEDs and their corresponding functions are as follows.

| LED<br>Call for Heat | <b>Controller Function</b><br>Monitors Outlet water temperature minus Switching Differential and thermostat circuit or tank probe circuit. LED is ON when the temperature at Outlet water Probe is less than the set-point minus the switching differential and the thermostat circuit or tank probe circuit is closed. |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow Switch          | Monitors the condition of the flow switch.<br>LED is ON when the flow switch closes,<br>indicating water flow through the system.                                                                                                                                                                                       |
| Pressure Switch      | Monitors the condition of the pressure<br>switches. LED is ON when the pres-<br>sure switches are in their correct state.                                                                                                                                                                                               |
| Ignitor Current      | Monitors current flow through the igni-<br>tor element. LED is ON when current<br>flow through the ignitor is sensed.                                                                                                                                                                                                   |
| Gas Valve            | Monitors Gas Valve output. LED is ON when the output relay supplying power to the gas valve(s) is closed.                                                                                                                                                                                                               |
| Flame Sense          | Monitors the Flame Sense Rod. LED is<br>ON when a signal from the flame rod is<br>sufficient to indicate flame.                                                                                                                                                                                                         |
| Blocked Air Intake   | Indicates a blockage or interference at the appliance air inlet.                                                                                                                                                                                                                                                        |
| Blocked Flue         | Indicates a blockage or interference at the appliance flue.                                                                                                                                                                                                                                                             |
| Blower Fail          | Indicates an error/malfunction in the blower motor circuit.                                                                                                                                                                                                                                                             |
| Circulate Fail       | Indicates an error/malfunction in the cir-<br>culating pump circuit.                                                                                                                                                                                                                                                    |
| Ignition Fail        | Indicates a malfunction in the ignition system circuit.                                                                                                                                                                                                                                                                 |

#### TROUBLESHOOTING

The WHC1502 Series Control System has many inherent diagnostic and fault detection routines built into its operating hardware and software. These routines, in conjunction with the four (4) digit LED display and eleven (11) LED status indicators on the Display Board, can greatly assist any service person in quickly pinpointing the source of a problem which may occur within the appliance. In certain circumstances, multiple LEDs will illuminate to better pinpoint the target area(s).

The following list defines the error code messages that scroll across the LED display:

| ERROR MESSAGE<br>OPEn InLEt ProbE | REPORTED ERROR<br>No probe detected at connector CN1 on<br>Control Board.           |
|-----------------------------------|-------------------------------------------------------------------------------------|
| OPEn OutLEt ProbE                 | No probe detected at connector CN2 on Control Board.                                |
| Circulation FAIL                  | No flow detected at flow switch.                                                    |
| Inducer FAIL                      | No pressure detected at pressure switch.                                            |
| FLAME SenSE FAIL                  | Flame sense detected before gas valve is turned on.                                 |
| SenSor FAIL                       | One of the sensors, Flow, Pressure, Hi Gas, or Lo Gas was not in the correct state. |
| Ignitor FAIL                      | No Ignitor current sensed.                                                          |
| No Ignition                       | Flame not detected after 3 (or 1) tries.                                            |
| ECO FAIL                          | ECO/High Limit switch opened.                                                       |
| Control FAIL                      | Relay did not open or close properly.                                               |

Upon lockout, manually push either the ADJUST, SELECT or ENTER/RESET button on the burner access panel to restart the boiler. If the boiler has an ECO lockout, the boiler's power must be reset and the Enter/Reset button must be pushed to restart the boiler.

#### **DESCRIPTION OF COMPONENTS**

#### **BLOWER PROVER PRESSURE SWITCH**

The blower prover pressure switch ensures that the combustion blower is operating and creating sufficient air pressure. This air pressure is measured in the pre-mix chamber behind the front jacket panel. It is important that this panel remain sealed at all times while the boiler is operating.

This pressure switch is normally open and closes when the combustion blower starts. The 20 second pre-purge timing starts after this switch closes.

#### **BLOCKED FLUE PRESSURE SWITCH**

The blocked flue pressure switch ensures that the flue gas vent is clear. This pressure switch is normally closed and only opens on the fault conditions.

#### BLOCKED AIR INTAKE PRESSURE SWITCH

The blocked air intake pressure switch ensures that the intake air system is clear. This pressure switch is normally closed and only opens on the fault conditions.

#### FLAME SENSOR

The flame sensor acts to prove the flame has carried over from the ignitor to the right-most burner. If no flame is sensed, the gas valve(s) will close automatically. If no flame is sensed on three (or one) ignition trials the boiler will lock out. Upon lockout, manually push either the ADJUST, SELECT OR ENTER/RESET button on the front jacket panel to restart the boiler.

#### WATER FLOW SWITCH

The Water Flow Switch is installed at the boiler outlet to prevent burner operation in the event of inadequate water flow through the boiler. The Water Flow Switch is a single pole, normally open switch that will close its contacts when increasing water flow rate is encountered. This switch is factory-set, but may require field adjustment. The contacts will open when the flow rate drops below the adjusted setting and the gas valve(s) will close turning off the gas to the burners.

#### LIMIT CONTROLS

This boiler contains two limit controls built into the outlet water probe. The automatic reset limit is adjustable from 110°F to 240°F.

The manual reset limit is factory-set at 250°F. Once the manually reset limit opens, the gas valve(s) will close and the boiler will lockout. Upon lockout, manually push either the ADJUST, SELECT OR ENTER/RESET push-button on the front jacket panel and turn the power off and on to the boiler to restart the boiler.

#### **ON/OFF SWITCH**

The ON/OFF switch is a single-pole, single-throw rocker switch. The switch provides 120VAC from the line source to the boiler.

#### COMBUSTION AIR BLOWER

The bearings in the motor are pre-lubricated and sealed at the factory. No further oiling of the bearings is required for the life of the motor.

#### GENERAL MAINTENANCE

These boilers are designed to give many years of efficient and satisfactory service when properly operated and maintained. To assure continued good performance, the following recommendations are made.

The area around the unit should be kept clean and free from lint and debris. Sweeping the floor around the boiler should be done carefully. This will reduce the dust and dirt which may enter the burner and heat exchanger, causing improper combustion and sooting.

# THE FLOW OF COMBUSTION AIR TO THE BOILER MUST NOT BE OBSTRUCTED.

#### THE BOILER AREA MUST BE KEPT CLEAR AND FREE FROM COMBUSTIBLE MATERIALS, GASOLINE AND OTHER FLAMMABLE VAPORS AND LIQUIDS.

Any safety devices including low water cutoffs used in conjunction with this boiler should receive periodic (every six months) inspection to assure proper operation. A low water cutoff device of the float type should be flushed every six months.

Periodic checks, at least twice a year, should be made for water and/or gas leaks.

More frequent inspections may be necessary depending on water conditions.

The boiler-mounted gas and electrical controls have been designed to give both dependable service and long life. However, malfunction can occur, as with any piece of equipment. It is therefore recommended that all components be checked periodically by a qualified serviceman for proper operation.

#### RELIEF VALVE

The safety relief valve should be opened at least twice a year to check its working condition. This will aid in assuring proper pressure relief protection. Lift the lever at the top of the valve several times until the valve seats properly and operates freely.

#### 

THE WATER PASSING OUT OF THE VALVE DURING CHECKING OPERATION MAY BE EXTREMELY HOT. BEFORE OPERATING RELIEF VALVE, MAKE SURE DRAIN LINE IS INSTALLED TO DIRECT DISCHARGE TO A SAFE LOCATION SUCH AS AN OPEN DRAIN, TO AVOID SCALDING OR WATER DAMAGE.

#### 

SHOULD OVERHEATING OCCUR OR THE GAS SUPPLY FAIL TO SHUT OFF, TURN OFF THE MANUAL GAS CONTROL VALVE TO THE APPLIANCE.

#### COMBUSTION AIR FILTER

If the combustion air supply to the boiler contains dust, dirt, drywall dust etc. a filter must be installed. Air filter is not supplied with the boiler as shipped from the factory. The installer must provide a filtering system in the air inlet to the boiler if dust, dirt or construction dirt can be pulled into the boiler through the inlet air piping.

#### **BLOWER COMPARTMENT**

The blower compartment should be cleaned annually to remove any dirt and lint that may have accumulated in the compartment or on the blower and motor. Buildups of dirt and lint on the blower and motor can create excessive loads on the motor resulting in higher that normal operating temperatures and possible shortened service life.

#### **VENTING MAINTENANCE**

It is recommended that the intake and exhaust piping of the appliance be checked every 3 months for dust, condensate leakage, deterioration and carbon deposits.

Qualified serviceman should follow this procedure when the boiler's intake and exhaust piping need cleaning.

#### 

DO NOT USE A NYLON BRUSH OR OTHER STATIC CREATING MATERIAL TO CLEAN DUST AND CARBON DEPOSITS FROM HEATING SURFACES AND VENT.

SUCH DEPOSITS ARE FLAMMABLE AND MAY BE IGNITED BY STATIC ELECTRICITY. USE A METAL BRUSH TO MINIMIZE THE DANGER OF EXPLOSION

- 1. Turn off the electrical power, and manual gas shut-off.
  - Allow boiler parts to cool before disassembly.
- 2. Remove the vent pipe.
  - Check parts and chimney for obstructions and clean as necessary.
- 3. Remove burners from boiler and other metal parts as required to clean as necessary.
  - Refer to parts list supplied with this manual for disassembly aid.
- 4. Clean and reinstall the parts removed in steps 2 and 3.
  - Be sure the vent pipe has a minimum upward pitch of one quarter inch per foot of length and is sealed as necessary.

- 5. Restore electrical power and gas supply to boiler.
  - Check for gas leaks and proper boiler and vent operation.

#### HEAT EXCHANGER PREVENTIVE MAINTENANCE

In most water supply systems some solids exist. As the water is heated, these tend to drop out depositing as scale or lime. This scale must be removed before the heat exchanger tubes become blocked.

#### 

Lime accumulation can reduce the life of the equipment, reduce efficiency and waste fuel. Boiler failure due to lime or scale buildup voids the warranty.

See section on CIRCULATING PUMP to ensure you have selected the proper size pump for your situation.

#### DELIMING

The amount of calcium carbonate (lime) released from water is in direct proportion to water temperature and usage. The higher the water temperature or water usage, the more lime deposits are dropped out of the water. This is the lime scale which forms in pipes, boilers and on cooking utensils.

The usage of water softening equipment greatly reduces the hardness of water. However, this equipment does not always remove all of the hardness (lime). For this reason it is recommended that a regular schedule for deliming be maintained.

The time between cleaning will vary from two to six months depending upon water conditions and usage. A change of approximately 5°F in the normal temperature rise through the boiler is usually an indication that scale should be removed. For long life, copper or brass is recommended for all valves, pipe and fittings, see figure 23.

#### TUBE CLEANING PROCEDURE MECHANICAL REMOVAL OF DEPOSITS

Establish a regular inspection schedule, the frequency depends on the local water conditions and severity of service. Do not let the tubes clog up solidly. Clean out deposits over 1/16 inch thickness.

To service heat exchanger tubes remove return header casting, side opposite the water connections. Use a standard 9/16" deep socket ratchet to remove the nuts, exposing the tube ends. Inspect to ensure tubes are free of scale and deposits. If scaled, remove deposits with a stiff wire brush or mechanical tube cleaner to bare metal. Install new O rings and reinstall return header casting. Flush system.

Note: Removal of the heat exchanger is not required.

#### 

If heat exchanger maintenance requires tubing replacement, special provisions shall be taken to ensure that the damaged tubes are carefully removed.

Replacement tubes must be properly installed and expanded into the tube plate.

Over rolling, misalignment of tubes or improper tightening of the assembly may result in leaks or damage to the heat exchanger. Contact your A. O. Smith dealer for detailed instructions.

# **Start-up Instructions**

## COPPER BOILERS FOR HYDRONIC HEATING AND HOT WATER SUPPLY SERIES 200, 201, 202, 203

Before starting the boiler please review the Boiler's Instruction Manual (AOS Part Number 210889-000) supplied with the boiler. This is a powered combustion copper tube boiler. If you are not familiar with a powered combustion boiler please contact an authorized A.O. Smith representative before starting the unit.

This boiler is equipped with a WHC 1502 control board and a Diascan II integrated display system. The Dia-Scan II displays the system status and errors that may occur during normal operation. For full details on the controls please refer to the Instruction Manual supplied with the boiler. The boiler must be installed according to the Installation Instructions provided with the unit. Failure to do so will void the warranty.

## Prior to starting the boiler for the first time check the following:

Gas Supply Lines are sized in accordance with ANSI Z223.1 National Fuel Gas Code or CAN/CGA-B149.1 or B 149.2 (most recent edition).

Minimum Inlet Gas Supply Pressure of 5.5" W.C. for Natural Gas or 11.0" W.C. for Propane.

Check all gas supply lines for leaks.

Check that all venting is properly sealed in accordance with the Instruction Manual.

Main power is 120 VAC, 60Hz, single phase, rated for 20 Amps or above.

Turn "ON" gas and water supply to the boiler ( DO NOT DRY FIRE THE BOILER ).

Purge air from the gas and water lines.

Make sure the boiler is not damaged and all jacket panels are tightly sealed with all the screws in place. If the unit is damaged contact an A.O. Smith representative for service or replacement parts prior to starting the boiler.

#### Starting the boiler for the first time.

The boiler is tested at the factory and should start properly if installed in accordance with the Boiler's Instruction Manual. The boiler may have a slight rumble on a cold start. This is normal and will not harm the unit nor is it a safety issue. The rumble is caused by cold water in the heat exchanger creating a cold combustion chamber. Thus, the rumble occurs. Once the boiler has been started from a cold start the rumble will disappear on subsequent starts.

Should the boiler not start, a minor air shutter adjustment may be required by the installer, as atmospheric conditions may change the amount of air supplied to the unit at the given installation site (see figure 24 for final flame appearance).

When adjusting the air shutter, 1/2 turns on the air shutter adjustment screw (located at the top of the unit) are recommended. If the boiler continues to start hard or rough after the initial cold start, adjust the air shutter until the boiler starts smoothly.

# DO NOT try to adjust the gas air mixture to make the flame sit on the burner (see figure 24 for final flame appearance).

This is a powered burner and the flame is not supposed to be on the burner. The flame should be just above the burner deck approximately 1/8" and blue in color (see figure 24).

Visually check flame characteristics through the view port located under the left-hand header on the boiler. Figure 24 below shows the normal flame condition. Also, refer to the flame label on the unit (adjacent to the view port).

A. Normal Flame: A normal flame is blue without yellow tips. No adjustments required.

B. Yellow Tips: Yellow tips are caused by a lack of air to the burner.

| D. Tenow hp                                                                            | D. Tenow Tips. Tenow tips are caused by a lack of an to the burner. |                 |           |                                    |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------|-----------|------------------------------------|--|--|
| Poss                                                                                   | sible cause:                                                        | Blocked intake. | Solution: | Remove blockage.                   |  |  |
| Poss                                                                                   | sible cause:                                                        | Air shutter.    | Solution: | Open Air Shutter until normal      |  |  |
|                                                                                        |                                                                     |                 |           | flame occurs.                      |  |  |
| Poss                                                                                   | sible cause:                                                        | Gas pressure    | Solution: | Check manifold pressure and        |  |  |
|                                                                                        |                                                                     |                 |           | adjust to proper setting.          |  |  |
| C. Yellow Flames: Yellow flames are caused by a lack of air to the burner.             |                                                                     |                 |           |                                    |  |  |
| Poss                                                                                   | sible cause:                                                        | Blocked intake. | Solution: | Remove blockage.                   |  |  |
| Poss                                                                                   | sible cause:                                                        | Blocked burner. | Solution: | Remove blockage.                   |  |  |
| Poss                                                                                   | sible cause:                                                        | Air shutter.    | Solution: | Open air shutter until normal      |  |  |
|                                                                                        |                                                                     |                 |           | flame occurs.                      |  |  |
| Poss                                                                                   | sible cause:                                                        | Gas pressure.   | Solution: | Check manifold pressure and        |  |  |
|                                                                                        |                                                                     | -               |           | adjust to proper setting.          |  |  |
| D. Lifting Flames: Lifting flames are caused by over firing the burners or excess air. |                                                                     |                 |           |                                    |  |  |
| Poss                                                                                   | sible cause:                                                        | Gas pressure.   | Solution: | Check manifold pressure and        |  |  |
|                                                                                        |                                                                     |                 |           | adjust to proper setting.          |  |  |
| Poss                                                                                   | sible cause:                                                        | Air shutter.    | Solution: | Close the air shutter until normal |  |  |
|                                                                                        |                                                                     |                 |           | flame occurs.                      |  |  |

#### **Gas Manifold Pressure Settings:**

GB & GW-200 thru 750: 3.5" W.C (Natural Gas) GB & GW-200 thru 750: 10.0" W.C. (Propane Gas).

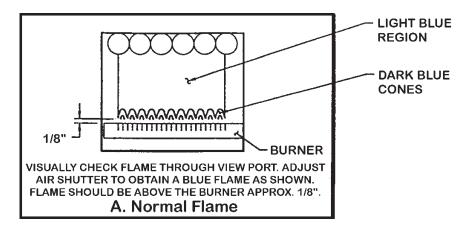



Figure 24. Burner Flame Characteristics

For additional information please refer to the User's Manual supplied with the boiler or contact:

# A.O. Smith Technical Services at

# 1-800-527-1953

7 a.m. to 7 p.m. Central Time.

Our Internet Site is another source of information 24 hours a day. http://www.hotwater.com